Poincaré inequalities and hitting times

Patrick Cattiaux; Arnaud Guillin; Pierre André Zitt

Annales de l'I.H.P. Probabilités et statistiques (2013)

  • Volume: 49, Issue: 1, page 95-118
  • ISSN: 0246-0203

Abstract

top
Equivalence of the spectral gap, exponential integrability of hitting times and Lyapunov conditions is well known. We give here the correspondence (with quantitative results) for reversible diffusion processes. As a consequence, we generalize results of Bobkov in the one dimensional case on the value of the Poincaré constant for log-concave measures to superlinear potentials. Finally, we study various functional inequalities under different hitting times integrability conditions (polynomial,…). In particular, in the one dimensional case, ultracontractivity is equivalent to a bounded Lyapunov condition.

How to cite

top

Cattiaux, Patrick, Guillin, Arnaud, and Zitt, Pierre André. "Poincaré inequalities and hitting times." Annales de l'I.H.P. Probabilités et statistiques 49.1 (2013): 95-118. <http://eudml.org/doc/272061>.

@article{Cattiaux2013,
abstract = {Equivalence of the spectral gap, exponential integrability of hitting times and Lyapunov conditions is well known. We give here the correspondence (with quantitative results) for reversible diffusion processes. As a consequence, we generalize results of Bobkov in the one dimensional case on the value of the Poincaré constant for log-concave measures to superlinear potentials. Finally, we study various functional inequalities under different hitting times integrability conditions (polynomial,…). In particular, in the one dimensional case, ultracontractivity is equivalent to a bounded Lyapunov condition.},
author = {Cattiaux, Patrick, Guillin, Arnaud, Zitt, Pierre André},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {poincaré inequalities; Lyapunov functions; hitting times; log-concave measures; Poincaré–Sobolev inequalities; Poincaré inequalities; Poincaré-Sobolev inequalities},
language = {eng},
number = {1},
pages = {95-118},
publisher = {Gauthier-Villars},
title = {Poincaré inequalities and hitting times},
url = {http://eudml.org/doc/272061},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Cattiaux, Patrick
AU - Guillin, Arnaud
AU - Zitt, Pierre André
TI - Poincaré inequalities and hitting times
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 1
SP - 95
EP - 118
AB - Equivalence of the spectral gap, exponential integrability of hitting times and Lyapunov conditions is well known. We give here the correspondence (with quantitative results) for reversible diffusion processes. As a consequence, we generalize results of Bobkov in the one dimensional case on the value of the Poincaré constant for log-concave measures to superlinear potentials. Finally, we study various functional inequalities under different hitting times integrability conditions (polynomial,…). In particular, in the one dimensional case, ultracontractivity is equivalent to a bounded Lyapunov condition.
LA - eng
KW - poincaré inequalities; Lyapunov functions; hitting times; log-concave measures; Poincaré–Sobolev inequalities; Poincaré inequalities; Poincaré-Sobolev inequalities
UR - http://eudml.org/doc/272061
ER -

References

top
  1. [1] C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer. Sur les inégalités de Sobolev logarithmiques. Panoramas et Synthèses 10. Société Mathématique de France, Paris, 2000. Zbl0982.46026
  2. [2] D. Bakry, F. Barthe, P. Cattiaux and A. Guillin. A simple proof of the Poincaré inequality for a large class of probability measures. Electron. Commun. Probab.13 (2008) 60–66. Zbl1186.26011MR2386063
  3. [3] D. Bakry, P. Cattiaux and A. Guillin. Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal.254 (2008) 727–759. Zbl1146.60058MR2381160
  4. [4] F. Barthe, P. Cattiaux and C. Roberto. Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry. Rev. Mat. Iberoam. 22 (2006) 993–1067. Zbl1118.26014MR2320410
  5. [5] S. G. Bobkov. Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab.27 (1999) 1903–1921. Zbl0964.60013MR1742893
  6. [6] S. G. Bobkov and C. Houdré. Isoperimetric constants for product probability measures. Ann. Probab.25 (1997) 184–205. Zbl0878.60013MR1428505
  7. [7] S. G. Bobkov and B. Zegarlinski. Entropy bounds and isoperimetry. Mem. Amer. Math. Soc. 176 (2005) 69 pp. Zbl1161.46300MR2146071
  8. [8] R. Carmona and A. Klein. Exponential moments for hitting times of uniformly ergodic Markov processes. Ann. Probab.11 (1983) 648–655. Zbl0523.60064MR704551
  9. [9] P. Cattiaux. Calcul stochastique et opérateurs dégénérés du second ordre: I Résolvantes, théorème de Hörmander et applications. Bull. Sci. Math.114 (1990) 421–462. Zbl0715.60064MR1077270
  10. [10] P. Cattiaux. Calcul stochastique et opérateurs dégénérés du second ordre: II Problème de Dirichlet. Bull. Sci. Math.115 (1991) 81–122. Zbl0790.60048MR1086940
  11. [11] P. Cattiaux, P. Collet, A. Lambert, S. Martinez, S. Méléard and J. San Martin. Quasi-stationarity distributions and diffusion models in population dynamics. Ann. Probab.37 (2009) 1926–1969. Zbl1176.92041MR2561437
  12. [12] P. Cattiaux, N. Gozlan, A. Guillin and C. Roberto. Functional inequalities for heavy tailed distributions and application to isoperimetry. Electron. J. Probab.15 (2010) 346–385. Zbl1205.60039MR2609591
  13. [13] P. Cattiaux and A. Guillin. Deviation bounds for additive functionals of Markov processes. ESAIM Probab. Stat.12 (2008) 12–29. Zbl1183.60011MR2367991
  14. [14] P. Cattiaux and A. Guillin. Trends to equilibrium in total variation distance. Ann. Inst. Henri Poincaré Probab. Stat.45 (2009) 117–145. Zbl1202.26028MR2500231
  15. [15] P. Cattiaux and A. Guillin. Functional inequalities via Lyapunov conditions. In Proceedings of the Summer School on Optimal Transport (Grenoble 2009). To appear, 2010. Available at arXiv:1001.1822. Zbl06536290
  16. [16] P. Cattiaux, A. Guillin, F. Y. Wang and L. Wu. Lyapunov conditions for super Poincaré inequality. J. Funct. Anal.256 (2009) 1821–1841. Zbl1167.26007MR2498560
  17. [17] P. Cattiaux and S. Méléard. Competitive or weak cooperative stochastic Lotka–Volterra systems conditioned to non extinction. J. Math. Biol.60 (2010) 797–829. Zbl1202.92082MR2606515
  18. [18] M.-F. Chen. Eigenvalues, Inequalities, and Ergodic Theory. Probab. Appl. (N. Y.). Springer, London, 2005. Zbl1079.60005MR2105651
  19. [19] R. Douc, G. Fort and A. Guillin. Subgeometric rates of convergence of f -ergodic strong Markov processes. Stochastic Process. Appl.119 (2009) 897–923. Zbl1163.60034MR2499863
  20. [20] N. Down, S. P. Meyn and R. L. Tweedie. Exponential and uniform ergodicity of Markov processes. Ann. Probab.23 (1995) 1671–1691. Zbl0852.60075MR1379163
  21. [21] P. Fougères. Spectral gap for log-concave probability measures on the real line. In Séminaire de Probabilités XXXVIII 95–123. Lecture Notes in Math. 1857. Springer, Berlin, 2005. Zbl1081.60010MR2126968
  22. [22] M. Hairer and J. C. Mattingly. Yet another look at Harris’ ergodic theorem for Markov chains. Preprint, 2008. Available at arXiv:0810.2777. Zbl1248.60082MR2857021
  23. [23] M. Ledoux. Spectral gap, logarithmic Sobolev constant, and geometric bounds. In Surveys in Differential Geometry, Vol. IX 219–240. Int. Press, Somerville, MA, 2004. Zbl1061.58028MR2195409
  24. [24] D. Loukianova, O. Loukianov and S. Song. Poincaré inequality and exponential integrability of hitting times for linear diffusions. Available at ArXiv:0907.0762, 2009. Zbl1233.60044
  25. [25] P. Mathieu. Hitting times and spectral gap inequalities. Ann. Inst. Henri Poincaré Probab. Stat.33 (1997) 437–465. Zbl0894.60070MR1465797
  26. [26] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Communications and Control Engineering Series. Springer, London, 1993. Zbl0925.60001MR1287609
  27. [27] M. Röckner and F. Y. Wang. Weak Poincaré inequalities and L 2 -convergence rates of Markov semi-groups. J. Funct. Anal.185 (2001) 564–603. Zbl1009.47028MR1856277
  28. [28] F. Y. Wang. Functional Inequalities, Markov Processes and Spectral Theory. Science Press, Beijing, 2005. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.