Poincaré inequalities and hitting times
Patrick Cattiaux; Arnaud Guillin; Pierre André Zitt
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 1, page 95-118
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topCattiaux, Patrick, Guillin, Arnaud, and Zitt, Pierre André. "Poincaré inequalities and hitting times." Annales de l'I.H.P. Probabilités et statistiques 49.1 (2013): 95-118. <http://eudml.org/doc/272061>.
@article{Cattiaux2013,
abstract = {Equivalence of the spectral gap, exponential integrability of hitting times and Lyapunov conditions is well known. We give here the correspondence (with quantitative results) for reversible diffusion processes. As a consequence, we generalize results of Bobkov in the one dimensional case on the value of the Poincaré constant for log-concave measures to superlinear potentials. Finally, we study various functional inequalities under different hitting times integrability conditions (polynomial,…). In particular, in the one dimensional case, ultracontractivity is equivalent to a bounded Lyapunov condition.},
author = {Cattiaux, Patrick, Guillin, Arnaud, Zitt, Pierre André},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {poincaré inequalities; Lyapunov functions; hitting times; log-concave measures; Poincaré–Sobolev inequalities; Poincaré inequalities; Poincaré-Sobolev inequalities},
language = {eng},
number = {1},
pages = {95-118},
publisher = {Gauthier-Villars},
title = {Poincaré inequalities and hitting times},
url = {http://eudml.org/doc/272061},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Cattiaux, Patrick
AU - Guillin, Arnaud
AU - Zitt, Pierre André
TI - Poincaré inequalities and hitting times
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 1
SP - 95
EP - 118
AB - Equivalence of the spectral gap, exponential integrability of hitting times and Lyapunov conditions is well known. We give here the correspondence (with quantitative results) for reversible diffusion processes. As a consequence, we generalize results of Bobkov in the one dimensional case on the value of the Poincaré constant for log-concave measures to superlinear potentials. Finally, we study various functional inequalities under different hitting times integrability conditions (polynomial,…). In particular, in the one dimensional case, ultracontractivity is equivalent to a bounded Lyapunov condition.
LA - eng
KW - poincaré inequalities; Lyapunov functions; hitting times; log-concave measures; Poincaré–Sobolev inequalities; Poincaré inequalities; Poincaré-Sobolev inequalities
UR - http://eudml.org/doc/272061
ER -
References
top- [1] C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer. Sur les inégalités de Sobolev logarithmiques. Panoramas et Synthèses 10. Société Mathématique de France, Paris, 2000. Zbl0982.46026
- [2] D. Bakry, F. Barthe, P. Cattiaux and A. Guillin. A simple proof of the Poincaré inequality for a large class of probability measures. Electron. Commun. Probab.13 (2008) 60–66. Zbl1186.26011MR2386063
- [3] D. Bakry, P. Cattiaux and A. Guillin. Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal.254 (2008) 727–759. Zbl1146.60058MR2381160
- [4] F. Barthe, P. Cattiaux and C. Roberto. Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry. Rev. Mat. Iberoam. 22 (2006) 993–1067. Zbl1118.26014MR2320410
- [5] S. G. Bobkov. Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab.27 (1999) 1903–1921. Zbl0964.60013MR1742893
- [6] S. G. Bobkov and C. Houdré. Isoperimetric constants for product probability measures. Ann. Probab.25 (1997) 184–205. Zbl0878.60013MR1428505
- [7] S. G. Bobkov and B. Zegarlinski. Entropy bounds and isoperimetry. Mem. Amer. Math. Soc. 176 (2005) 69 pp. Zbl1161.46300MR2146071
- [8] R. Carmona and A. Klein. Exponential moments for hitting times of uniformly ergodic Markov processes. Ann. Probab.11 (1983) 648–655. Zbl0523.60064MR704551
- [9] P. Cattiaux. Calcul stochastique et opérateurs dégénérés du second ordre: I Résolvantes, théorème de Hörmander et applications. Bull. Sci. Math.114 (1990) 421–462. Zbl0715.60064MR1077270
- [10] P. Cattiaux. Calcul stochastique et opérateurs dégénérés du second ordre: II Problème de Dirichlet. Bull. Sci. Math.115 (1991) 81–122. Zbl0790.60048MR1086940
- [11] P. Cattiaux, P. Collet, A. Lambert, S. Martinez, S. Méléard and J. San Martin. Quasi-stationarity distributions and diffusion models in population dynamics. Ann. Probab.37 (2009) 1926–1969. Zbl1176.92041MR2561437
- [12] P. Cattiaux, N. Gozlan, A. Guillin and C. Roberto. Functional inequalities for heavy tailed distributions and application to isoperimetry. Electron. J. Probab.15 (2010) 346–385. Zbl1205.60039MR2609591
- [13] P. Cattiaux and A. Guillin. Deviation bounds for additive functionals of Markov processes. ESAIM Probab. Stat.12 (2008) 12–29. Zbl1183.60011MR2367991
- [14] P. Cattiaux and A. Guillin. Trends to equilibrium in total variation distance. Ann. Inst. Henri Poincaré Probab. Stat.45 (2009) 117–145. Zbl1202.26028MR2500231
- [15] P. Cattiaux and A. Guillin. Functional inequalities via Lyapunov conditions. In Proceedings of the Summer School on Optimal Transport (Grenoble 2009). To appear, 2010. Available at arXiv:1001.1822. Zbl06536290
- [16] P. Cattiaux, A. Guillin, F. Y. Wang and L. Wu. Lyapunov conditions for super Poincaré inequality. J. Funct. Anal.256 (2009) 1821–1841. Zbl1167.26007MR2498560
- [17] P. Cattiaux and S. Méléard. Competitive or weak cooperative stochastic Lotka–Volterra systems conditioned to non extinction. J. Math. Biol.60 (2010) 797–829. Zbl1202.92082MR2606515
- [18] M.-F. Chen. Eigenvalues, Inequalities, and Ergodic Theory. Probab. Appl. (N. Y.). Springer, London, 2005. Zbl1079.60005MR2105651
- [19] R. Douc, G. Fort and A. Guillin. Subgeometric rates of convergence of -ergodic strong Markov processes. Stochastic Process. Appl.119 (2009) 897–923. Zbl1163.60034MR2499863
- [20] N. Down, S. P. Meyn and R. L. Tweedie. Exponential and uniform ergodicity of Markov processes. Ann. Probab.23 (1995) 1671–1691. Zbl0852.60075MR1379163
- [21] P. Fougères. Spectral gap for log-concave probability measures on the real line. In Séminaire de Probabilités XXXVIII 95–123. Lecture Notes in Math. 1857. Springer, Berlin, 2005. Zbl1081.60010MR2126968
- [22] M. Hairer and J. C. Mattingly. Yet another look at Harris’ ergodic theorem for Markov chains. Preprint, 2008. Available at arXiv:0810.2777. Zbl1248.60082MR2857021
- [23] M. Ledoux. Spectral gap, logarithmic Sobolev constant, and geometric bounds. In Surveys in Differential Geometry, Vol. IX 219–240. Int. Press, Somerville, MA, 2004. Zbl1061.58028MR2195409
- [24] D. Loukianova, O. Loukianov and S. Song. Poincaré inequality and exponential integrability of hitting times for linear diffusions. Available at ArXiv:0907.0762, 2009. Zbl1233.60044
- [25] P. Mathieu. Hitting times and spectral gap inequalities. Ann. Inst. Henri Poincaré Probab. Stat.33 (1997) 437–465. Zbl0894.60070MR1465797
- [26] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Communications and Control Engineering Series. Springer, London, 1993. Zbl0925.60001MR1287609
- [27] M. Röckner and F. Y. Wang. Weak Poincaré inequalities and -convergence rates of Markov semi-groups. J. Funct. Anal.185 (2001) 564–603. Zbl1009.47028MR1856277
- [28] F. Y. Wang. Functional Inequalities, Markov Processes and Spectral Theory. Science Press, Beijing, 2005.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.