Positivity of integrated random walks
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 1, page 195-213
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topVysotsky, Vladislav. "Positivity of integrated random walks." Annales de l'I.H.P. Probabilités et statistiques 50.1 (2014): 195-213. <http://eudml.org/doc/271949>.
@article{Vysotsky2014,
abstract = {Take a centered random walk $S_\{n\}$ and consider the sequence of its partial sums $A_\{n\}:=\sum _\{i=1\}^\{n\}S_\{i\}$. Suppose $S_\{1\}$ is in the domain of normal attraction of an $\alpha $-stable law with $1<\alpha \le 2$. Assuming that $S_\{1\}$ is either right-exponential (i.e. $\mathbb \{P\}(S_\{1\}>x|S_\{1\}>0)=\mathrm \{e\}^\{-ax\}$ for some $a>0$ and all $x>0$) or right-continuous (skip free), we prove that \[\mathbb \{P\}\lbrace A\_\{1\}>0,\dots ,A\_\{N\}>0\rbrace \sim C\_\{\alpha \}N^\{\{1\}/\{(2\alpha )\}-1/2\}\]
as $N\rightarrow \infty $, where $C_\{\alpha \}>0$ depends on the distribution of the walk. We also consider a conditional version of this problem and study positivity of integrated discrete bridges.},
author = {Vysotsky, Vladislav},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {integrated random walk; persistence; one-sided exit probability; unilateral small deviations; area of random walk; Sparre-Andersen theorem; stable excursion; area of excursion},
language = {eng},
number = {1},
pages = {195-213},
publisher = {Gauthier-Villars},
title = {Positivity of integrated random walks},
url = {http://eudml.org/doc/271949},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Vysotsky, Vladislav
TI - Positivity of integrated random walks
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 1
SP - 195
EP - 213
AB - Take a centered random walk $S_{n}$ and consider the sequence of its partial sums $A_{n}:=\sum _{i=1}^{n}S_{i}$. Suppose $S_{1}$ is in the domain of normal attraction of an $\alpha $-stable law with $1<\alpha \le 2$. Assuming that $S_{1}$ is either right-exponential (i.e. $\mathbb {P}(S_{1}>x|S_{1}>0)=\mathrm {e}^{-ax}$ for some $a>0$ and all $x>0$) or right-continuous (skip free), we prove that \[\mathbb {P}\lbrace A_{1}>0,\dots ,A_{N}>0\rbrace \sim C_{\alpha }N^{{1}/{(2\alpha )}-1/2}\]
as $N\rightarrow \infty $, where $C_{\alpha }>0$ depends on the distribution of the walk. We also consider a conditional version of this problem and study positivity of integrated discrete bridges.
LA - eng
KW - integrated random walk; persistence; one-sided exit probability; unilateral small deviations; area of random walk; Sparre-Andersen theorem; stable excursion; area of excursion
UR - http://eudml.org/doc/271949
ER -
References
top- [1] F. Aurzada and S. Dereich. Universality of the asymptotics of the one-sided exit problem for integrated processes. Ann. Inst. Henri Poincaré Probab. Stat. 49(1) (2013) 236–251. Zbl1285.60042MR3060155
- [2] J. Bertoin. Lévy Processes. Cambridge University Press, New York, 1996. Zbl0938.60005MR1406564
- [3] P. Billingsley. Convergence of Probability Measures, 2nd edition. Wiley, New York, 1999. Zbl0172.21201MR1700749
- [4] E. Bolthausen. On a functional central limit theorem for random walks conditioned to stay positive. Ann. Probab.4 (1976) 480–485. Zbl0336.60024MR415702
- [5] F. Caravenna and J.-D. Deuschel. Pinning and wetting transition for ()-dimensional fields with Laplacian interaction. Ann. Probab.36 (2008) 2388–2433. Zbl1179.60066MR2478687
- [6] A. Dembo, J. Ding and F. Gao. Persistence of iterated partial sums. Ann. Inst. Henri Poincaré Probab. Stat. 49(3) (2013) 873–884. Zbl1274.60144MR3112437
- [7] R. A. Doney. Conditional limit theorems for asymptotically stable random walks. Z. Wahrsch. Verw. Gebiete70 (1985) 351–360. Zbl0573.60063MR803677
- [8] R. A. Doney. One-sided local large deviation and renewal theorems in the case of infinite mean. Probab. Theory Related Fields107 (1997) 451–465. Zbl0883.60022MR1440141
- [9] V. A. Egorov. On the rate of convergence to a stable law. Theor. Probab. Appl.25 (1980) 180–187. Zbl0456.60020MR560073
- [10] W. Feller. An Introduction to Probability Theory and Its Applications 2. Wiley, New York, 1966. Zbl0219.60003MR210154
- [11] P. Greenwood and M. Shaked. Fluctuations of random walk in and storage systems. Adv. in Appl. Prob.9 (1977) 566–587. Zbl0376.60073MR464406
- [12] I. A. Ibragimov and Yu. V. Linnik. Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen, 1971. Zbl0219.60027MR322926
- [13] Y. Isozaki and S. Watanabe. An asymptotic formula for the Kolmogorov Diffusion and a refinement of Sinai’s estimates for the integral of Brownian motion. Proc. Japan Acad. Ser. A70 (1994) 271–276. Zbl0820.60066MR1313176
- [14] S. Janson. Brownian excursion area, Wright’s constants in graph enumeration, and other Brownian areas. Probab. Surveys 4 (2007) 80–145. Zbl1189.60147MR2318402
- [15] H. Kesten. Ratio theorems for random walks II. J. Anal. Math.11 (1963) 323–379. Zbl0121.35202MR163365
- [16] S. M. Majumdar. Persistence in nonequilibrium systems. Current Sci.77 (1999) 370–375.
- [17] S. V. Nagaev. On the asymptotic behaviour of one-sided large deviation probabilities. Theory Probab. Appl.26 (1982) 362–366. Zbl0481.60036
- [18] S. Resnick and P. Greenwood. A bivariate stable characterization and domains of attraction. J. Multivariate Anal.9 (1979) 206–221. Zbl0409.62038MR538402
- [19] M. Shimura. A class of conditional limit theorems related to ruin problem. Ann. Probab.11 (1983) 40–45. Zbl0506.60066MR682799
- [20] Ya. G. Sinai. Distribution of some functionals of the integral of a random walk. Theor. Math. Phys.90 (1992) 219–241. Zbl0810.60063MR1182301
- [21] V. A. Vatutin and V. Wachtel. Local probabilities for random walks conditioned to stay positive. Probab. Theory Related Fields143 (2009) 177–217. Zbl1158.60014MR2449127
- [22] V. Vysotsky. Clustering in a stochastic model of one-dimensional gas. Ann. Appl. Probab.18 (2008) 1026–1058. Zbl1141.60068MR2418237
- [23] V. Vysotsky. On the probability that integrated random walks stay positive. Stochastic Process. Appl.120 (2010) 1178–1193. Zbl1202.60070MR2639743
- [24] V. M. Zolotarev. One-Dimensional Stable Distributions. Amer. Math. Soc., Providence, RI, 1986. Zbl0589.60015MR854867
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.