Positivity of integrated random walks

Vladislav Vysotsky

Annales de l'I.H.P. Probabilités et statistiques (2014)

  • Volume: 50, Issue: 1, page 195-213
  • ISSN: 0246-0203

Abstract

top
Take a centered random walk S n and consider the sequence of its partial sums A n : = i = 1 n S i . Suppose S 1 is in the domain of normal attraction of an α -stable law with 1 l t ; α 2 . Assuming that S 1 is either right-exponential (i.e. ( S 1 g t ; x | S 1 g t ; 0 ) = e - a x for some a g t ; 0 and all x g t ; 0 ) or right-continuous (skip free), we prove that { A 1 g t ; 0 , , A N g t ; 0 } C α N 1 / ( 2 α ) - 1 / 2 as N , where C α g t ; 0 depends on the distribution of the walk. We also consider a conditional version of this problem and study positivity of integrated discrete bridges.

How to cite

top

Vysotsky, Vladislav. "Positivity of integrated random walks." Annales de l'I.H.P. Probabilités et statistiques 50.1 (2014): 195-213. <http://eudml.org/doc/271949>.

@article{Vysotsky2014,
abstract = {Take a centered random walk $S_\{n\}$ and consider the sequence of its partial sums $A_\{n\}:=\sum _\{i=1\}^\{n\}S_\{i\}$. Suppose $S_\{1\}$ is in the domain of normal attraction of an $\alpha $-stable law with $1&lt;\alpha \le 2$. Assuming that $S_\{1\}$ is either right-exponential (i.e. $\mathbb \{P\}(S_\{1\}&gt;x|S_\{1\}&gt;0)=\mathrm \{e\}^\{-ax\}$ for some $a&gt;0$ and all $x&gt;0$) or right-continuous (skip free), we prove that \[\mathbb \{P\}\lbrace A\_\{1\}&gt;0,\dots ,A\_\{N\}&gt;0\rbrace \sim C\_\{\alpha \}N^\{\{1\}/\{(2\alpha )\}-1/2\}\] as $N\rightarrow \infty $, where $C_\{\alpha \}&gt;0$ depends on the distribution of the walk. We also consider a conditional version of this problem and study positivity of integrated discrete bridges.},
author = {Vysotsky, Vladislav},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {integrated random walk; persistence; one-sided exit probability; unilateral small deviations; area of random walk; Sparre-Andersen theorem; stable excursion; area of excursion},
language = {eng},
number = {1},
pages = {195-213},
publisher = {Gauthier-Villars},
title = {Positivity of integrated random walks},
url = {http://eudml.org/doc/271949},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Vysotsky, Vladislav
TI - Positivity of integrated random walks
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 1
SP - 195
EP - 213
AB - Take a centered random walk $S_{n}$ and consider the sequence of its partial sums $A_{n}:=\sum _{i=1}^{n}S_{i}$. Suppose $S_{1}$ is in the domain of normal attraction of an $\alpha $-stable law with $1&lt;\alpha \le 2$. Assuming that $S_{1}$ is either right-exponential (i.e. $\mathbb {P}(S_{1}&gt;x|S_{1}&gt;0)=\mathrm {e}^{-ax}$ for some $a&gt;0$ and all $x&gt;0$) or right-continuous (skip free), we prove that \[\mathbb {P}\lbrace A_{1}&gt;0,\dots ,A_{N}&gt;0\rbrace \sim C_{\alpha }N^{{1}/{(2\alpha )}-1/2}\] as $N\rightarrow \infty $, where $C_{\alpha }&gt;0$ depends on the distribution of the walk. We also consider a conditional version of this problem and study positivity of integrated discrete bridges.
LA - eng
KW - integrated random walk; persistence; one-sided exit probability; unilateral small deviations; area of random walk; Sparre-Andersen theorem; stable excursion; area of excursion
UR - http://eudml.org/doc/271949
ER -

References

top
  1. [1] F. Aurzada and S. Dereich. Universality of the asymptotics of the one-sided exit problem for integrated processes. Ann. Inst. Henri Poincaré Probab. Stat. 49(1) (2013) 236–251. Zbl1285.60042MR3060155
  2. [2] J. Bertoin. Lévy Processes. Cambridge University Press, New York, 1996. Zbl0938.60005MR1406564
  3. [3] P. Billingsley. Convergence of Probability Measures, 2nd edition. Wiley, New York, 1999. Zbl0172.21201MR1700749
  4. [4] E. Bolthausen. On a functional central limit theorem for random walks conditioned to stay positive. Ann. Probab.4 (1976) 480–485. Zbl0336.60024MR415702
  5. [5] F. Caravenna and J.-D. Deuschel. Pinning and wetting transition for ( 1 + 1 )-dimensional fields with Laplacian interaction. Ann. Probab.36 (2008) 2388–2433. Zbl1179.60066MR2478687
  6. [6] A. Dembo, J. Ding and F. Gao. Persistence of iterated partial sums. Ann. Inst. Henri Poincaré Probab. Stat. 49(3) (2013) 873–884. Zbl1274.60144MR3112437
  7. [7] R. A. Doney. Conditional limit theorems for asymptotically stable random walks. Z. Wahrsch. Verw. Gebiete70 (1985) 351–360. Zbl0573.60063MR803677
  8. [8] R. A. Doney. One-sided local large deviation and renewal theorems in the case of infinite mean. Probab. Theory Related Fields107 (1997) 451–465. Zbl0883.60022MR1440141
  9. [9] V. A. Egorov. On the rate of convergence to a stable law. Theor. Probab. Appl.25 (1980) 180–187. Zbl0456.60020MR560073
  10. [10] W. Feller. An Introduction to Probability Theory and Its Applications 2. Wiley, New York, 1966. Zbl0219.60003MR210154
  11. [11] P. Greenwood and M. Shaked. Fluctuations of random walk in R d and storage systems. Adv. in Appl. Prob.9 (1977) 566–587. Zbl0376.60073MR464406
  12. [12] I. A. Ibragimov and Yu. V. Linnik. Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen, 1971. Zbl0219.60027MR322926
  13. [13] Y. Isozaki and S. Watanabe. An asymptotic formula for the Kolmogorov Diffusion and a refinement of Sinai’s estimates for the integral of Brownian motion. Proc. Japan Acad. Ser. A70 (1994) 271–276. Zbl0820.60066MR1313176
  14. [14] S. Janson. Brownian excursion area, Wright’s constants in graph enumeration, and other Brownian areas. Probab. Surveys 4 (2007) 80–145. Zbl1189.60147MR2318402
  15. [15] H. Kesten. Ratio theorems for random walks II. J. Anal. Math.11 (1963) 323–379. Zbl0121.35202MR163365
  16. [16] S. M. Majumdar. Persistence in nonequilibrium systems. Current Sci.77 (1999) 370–375. 
  17. [17] S. V. Nagaev. On the asymptotic behaviour of one-sided large deviation probabilities. Theory Probab. Appl.26 (1982) 362–366. Zbl0481.60036
  18. [18] S. Resnick and P. Greenwood. A bivariate stable characterization and domains of attraction. J. Multivariate Anal.9 (1979) 206–221. Zbl0409.62038MR538402
  19. [19] M. Shimura. A class of conditional limit theorems related to ruin problem. Ann. Probab.11 (1983) 40–45. Zbl0506.60066MR682799
  20. [20] Ya. G. Sinai. Distribution of some functionals of the integral of a random walk. Theor. Math. Phys.90 (1992) 219–241. Zbl0810.60063MR1182301
  21. [21] V. A. Vatutin and V. Wachtel. Local probabilities for random walks conditioned to stay positive. Probab. Theory Related Fields143 (2009) 177–217. Zbl1158.60014MR2449127
  22. [22] V. Vysotsky. Clustering in a stochastic model of one-dimensional gas. Ann. Appl. Probab.18 (2008) 1026–1058. Zbl1141.60068MR2418237
  23. [23] V. Vysotsky. On the probability that integrated random walks stay positive. Stochastic Process. Appl.120 (2010) 1178–1193. Zbl1202.60070MR2639743
  24. [24] V. M. Zolotarev. One-Dimensional Stable Distributions. Amer. Math. Soc., Providence, RI, 1986. Zbl0589.60015MR854867

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.