Universality of the asymptotics of the one-sided exit problem for integrated processes

Frank Aurzada; Steffen Dereich

Annales de l'I.H.P. Probabilités et statistiques (2013)

  • Volume: 49, Issue: 1, page 236-251
  • ISSN: 0246-0203

Abstract

top
We consider the one-sided exit problem – also called one-sided barrier problem – for ( α -fractionally) integrated random walks and Lévy processes. Our main result is that there exists a positive, non-increasing function α θ ( α ) such that the probability that any α -fractionally integrated centered Lévy processes (or random walk) with some finite exponential moment stays below a fixed level until time T behaves as T - θ ( α ) + o ( 1 ) for large T . We also investigate when the fixed level can be replaced by a different barrier satisfying certain growth conditions (moving boundary). This, in particular, extends Sinai’s result on the survival exponent θ ( 1 ) = 1 / 4 for the integrated simple random walk to general random walks with some finite exponential moment.

How to cite

top

Aurzada, Frank, and Dereich, Steffen. "Universality of the asymptotics of the one-sided exit problem for integrated processes." Annales de l'I.H.P. Probabilités et statistiques 49.1 (2013): 236-251. <http://eudml.org/doc/272048>.

@article{Aurzada2013,
abstract = {We consider the one-sided exit problem – also called one-sided barrier problem – for ($\alpha $-fractionally) integrated random walks and Lévy processes. Our main result is that there exists a positive, non-increasing function $\alpha \mapsto \theta (\alpha )$ such that the probability that any $\alpha $-fractionally integrated centered Lévy processes (or random walk) with some finite exponential moment stays below a fixed level until time $T$ behaves as $T^\{-\theta (\alpha )+\mathrm \{o\}(1)\}$ for large $T$. We also investigate when the fixed level can be replaced by a different barrier satisfying certain growth conditions (moving boundary). This, in particular, extends Sinai’s result on the survival exponent $\theta (1)=1/4$ for the integrated simple random walk to general random walks with some finite exponential moment.},
author = {Aurzada, Frank, Dereich, Steffen},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {integrated brownian motion; integrated Lévy process; integrated random walk; lower tail probability; moving boundary; one-sided barrier problem; one-sided exit problem; persistence probabilities; survival exponent; fractionally integrated Lévy process; moving barrier; persistence exponent; random polynomials},
language = {eng},
number = {1},
pages = {236-251},
publisher = {Gauthier-Villars},
title = {Universality of the asymptotics of the one-sided exit problem for integrated processes},
url = {http://eudml.org/doc/272048},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Aurzada, Frank
AU - Dereich, Steffen
TI - Universality of the asymptotics of the one-sided exit problem for integrated processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 1
SP - 236
EP - 251
AB - We consider the one-sided exit problem – also called one-sided barrier problem – for ($\alpha $-fractionally) integrated random walks and Lévy processes. Our main result is that there exists a positive, non-increasing function $\alpha \mapsto \theta (\alpha )$ such that the probability that any $\alpha $-fractionally integrated centered Lévy processes (or random walk) with some finite exponential moment stays below a fixed level until time $T$ behaves as $T^{-\theta (\alpha )+\mathrm {o}(1)}$ for large $T$. We also investigate when the fixed level can be replaced by a different barrier satisfying certain growth conditions (moving boundary). This, in particular, extends Sinai’s result on the survival exponent $\theta (1)=1/4$ for the integrated simple random walk to general random walks with some finite exponential moment.
LA - eng
KW - integrated brownian motion; integrated Lévy process; integrated random walk; lower tail probability; moving boundary; one-sided barrier problem; one-sided exit problem; persistence probabilities; survival exponent; fractionally integrated Lévy process; moving barrier; persistence exponent; random polynomials
UR - http://eudml.org/doc/272048
ER -

References

top
  1. [1] R. F. Bass, N. Eisenbaum and Z. Shi. The most visited sites of symmetric stable processes. Probab. Theory Related Fields116 (2000) 391–404. Zbl0955.60073MR1749281
  2. [2] G. Baxter and M. D. Donsker. On the distribution of the supremum functional for processes with stationary independent increments. Trans. Amer. Math. Soc.85 (1957) 73–87. Zbl0078.32002MR84900
  3. [3] J. Bertoin. Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ. Press, Cambridge, 1996. Zbl0861.60003MR1406564
  4. [4] J. Bertoin. The inviscid Burgers equation with Brownian initial velocity. Comm. Math. Phys.193 (1998) 397–406. Zbl0917.60063MR1618139
  5. [5] N. H. Bingham. Maxima of sums of random variables and suprema of stable processes. Z. Wahrsch. Verw. Gebiete26 (1973) 273–296. Zbl0238.60036MR415780
  6. [6] F. Caravenna and J.-D. Deuschel. Pinning and wetting transition for ( 1 + 1 ) -dimensional fields with Laplacian interaction. Ann. Probab.36 (2008) 2388–2433. Zbl1179.60066MR2478687
  7. [7] R. A. Doney. Spitzer’s condition and ladder variables in random walks. Probab. Theory Related Fields101 (1995) 577–580. Zbl0818.60060MR1327226
  8. [8] A. Dembo, B. Poonen, Q.-M. Shao and O. Zeitouni. Random polynomials having few or no real zeros. J. Amer. Math. Soc. 15 (2002) 857–892 (electronic). Zbl1002.60045MR1915821
  9. [9] J. D. Esary, F. Proschan and D. W. Walkup. Association of random variables, with applications. Ann. Math. Statist.38 (1967) 1466–1474. Zbl0183.21502MR217826
  10. [10] W. Feller. An Introduction to Probability Theory and Its Applications II, 2nd edition. Wiley, New York, 1971. Zbl0138.10207MR270403
  11. [11] M. Goldman. On the first passage of the integrated Wiener process. Ann. Math. Statist.42 (1971) 2150–2155. Zbl0271.60049MR297017
  12. [12] P. Groeneboom, G. Jongbloed and J. A. Wellner. Integrated Brownian motion, conditioned to be positive. Ann. Probab.27 (1999) 1283–1303. Zbl0983.60078MR1733148
  13. [13] Y. Isozaki and S. Watanabe. An asymptotic formula for the Kolmogorov diffusion and a refinement of Sinai’s estimates for the integral of Brownian motion. Proc. Japan Acad. Ser. A Math. Sci.70 (1994) 271–276. Zbl0820.60066MR1313176
  14. [14] J. Komlós, P. Major and G. Tusnády. An approximation of partial sums of independent RV ’s and the sample DF . I. Z. Wahrsch. Verw. Gebiete32 (1975) 111–131. Zbl0308.60029MR375412
  15. [15] A. Lachal. Sur le premier instant de passage de l’intégrale du mouvement Brownien. Ann. Inst. Henri Poincaré Probab. Stat.27 (1991) 385–405. Zbl0747.60075MR1131839
  16. [16] A. Lachal. Sur les excursions de l’intégrale du mouvement Brownien. C. R. Acad. Sci. Paris Sér. I Math.314 (1992) 1053–1056. Zbl0757.60075MR1168534
  17. [17] W. V. Li and Q.-M. Shao. A normal comparison inequality and its applications. Probab. Theory Related Fields122 (2002) 494–508. Zbl1004.60031MR1902188
  18. [18] W. V. Li and Q.-M. Shao. Lower tail probabilities for Gaussian processes. Ann. Probab.32 (2004) 216–242. Zbl1052.60028MR2040781
  19. [19] W. V. Li and Q.-M. Shao. Recent developments on lower tail probabilities for Gaussian processes. Cosmos1 (2005) 95–106. MR2329259
  20. [20] M. Lifshits. Gaussian Random Functions. Mathematics and Its Applications. Kluwer Academic, Dordrecht, 1995. Zbl0832.60002MR1472736
  21. [21] S. N. Majumdar. Persistence in nonequilibrium systems. Current Sci.77 (1999) 370–375. 
  22. [22] H. P. McKean, Jr.A winding problem for a resonator driven by a white noise. J. Math. Kyoto Univ.2 (1963) 227–235. Zbl0119.34701MR156389
  23. [23] G. M. Molchan. Maximum of a fractional Brownian motion: Probabilities of small values. Comm. Math. Phys.205 (1999) 97–111. Zbl0942.60065MR1706900
  24. [24] G. M. Molchan. On the maximum of fractional Brownian motion. Teor. Veroyatn. Primen.44 (1999) 111–115. Zbl0966.60036MR1751192
  25. [25] G. M. Molchan. Unilateral small deviations of processes related to the fractional Brownian motion. Stochastic Process. Appl.118 (2008) 2085–2097. Zbl1151.60017MR2462290
  26. [26] I. Monroe. On embedding right continuous martingales in Brownian motion. Ann. Math. Statist.43 (1972) 1293–1311. Zbl0267.60050MR343354
  27. [27] A. A. Novikov. Estimates for and asymptotic behavior of the probabilities of a Wiener process not crossing a moving boundary. Mat. Sb. 110 (1979) 539–550 (in Russian). English translation in: Sb. Math. 38 (1981) 495–505. Zbl0462.60079MR562208
  28. [28] J. Obłój. The Skorokhod embedding problem and its offspring. Probab. Surv. 1 (2004) 321–390 (electronic). Zbl1189.60088MR2068476
  29. [29] T. Simon. The lower tail problem for homogeneous functionals of stable processes with no negative jumps. ALEA Lat. Am. J. Probab. Math. Stat. 3 (2007) 165–179 (electronic). Zbl1145.60027MR2349807
  30. [30] T. Simon. On the Hausdorff dimension of regular points of inviscid Burgers equation with stable initial data. J. Stat. Phys.131 (2008) 733–747. Zbl1155.35114MR2398951
  31. [31] Y. G. Sinai. Distribution of some functionals of the integral of a random walk. Teoret. Mat. Fiz.90 (1992) 323–353. Zbl0810.60063MR1182301
  32. [32] D. Slepian. The one-sided barrier problem for Gaussian noise. Bell System Tech. J.41 (1962) 463–501. MR133183
  33. [33] J. M. Steele. Stochastic Calculus and Financial Applications. Applications of Mathematics 45. Springer, New York, 2001. Zbl0962.60001MR1783083
  34. [34] K. Uchiyama. Brownian first exit from and sojourn over one sided moving boundary and application. Z. Wahrsch. Verw. Gebiete54 (1980) 75–116. Zbl0431.60080MR595482
  35. [35] V. Vysotsky. Clustering in a stochastic model of one-dimensional gas. Ann. Appl. Probab.18 (2008) 1026–1058. Zbl1141.60068MR2418237
  36. [36] V. Vysotsky. On the probability that integrated random walks stay positive. Stochastic Process. Appl.120 (2010) 1178–1193. Zbl1202.60070MR2639743

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.