Universality of the asymptotics of the one-sided exit problem for integrated processes
Frank Aurzada; Steffen Dereich
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 1, page 236-251
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topAurzada, Frank, and Dereich, Steffen. "Universality of the asymptotics of the one-sided exit problem for integrated processes." Annales de l'I.H.P. Probabilités et statistiques 49.1 (2013): 236-251. <http://eudml.org/doc/272048>.
@article{Aurzada2013,
abstract = {We consider the one-sided exit problem – also called one-sided barrier problem – for ($\alpha $-fractionally) integrated random walks and Lévy processes. Our main result is that there exists a positive, non-increasing function $\alpha \mapsto \theta (\alpha )$ such that the probability that any $\alpha $-fractionally integrated centered Lévy processes (or random walk) with some finite exponential moment stays below a fixed level until time $T$ behaves as $T^\{-\theta (\alpha )+\mathrm \{o\}(1)\}$ for large $T$. We also investigate when the fixed level can be replaced by a different barrier satisfying certain growth conditions (moving boundary). This, in particular, extends Sinai’s result on the survival exponent $\theta (1)=1/4$ for the integrated simple random walk to general random walks with some finite exponential moment.},
author = {Aurzada, Frank, Dereich, Steffen},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {integrated brownian motion; integrated Lévy process; integrated random walk; lower tail probability; moving boundary; one-sided barrier problem; one-sided exit problem; persistence probabilities; survival exponent; fractionally integrated Lévy process; moving barrier; persistence exponent; random polynomials},
language = {eng},
number = {1},
pages = {236-251},
publisher = {Gauthier-Villars},
title = {Universality of the asymptotics of the one-sided exit problem for integrated processes},
url = {http://eudml.org/doc/272048},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Aurzada, Frank
AU - Dereich, Steffen
TI - Universality of the asymptotics of the one-sided exit problem for integrated processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 1
SP - 236
EP - 251
AB - We consider the one-sided exit problem – also called one-sided barrier problem – for ($\alpha $-fractionally) integrated random walks and Lévy processes. Our main result is that there exists a positive, non-increasing function $\alpha \mapsto \theta (\alpha )$ such that the probability that any $\alpha $-fractionally integrated centered Lévy processes (or random walk) with some finite exponential moment stays below a fixed level until time $T$ behaves as $T^{-\theta (\alpha )+\mathrm {o}(1)}$ for large $T$. We also investigate when the fixed level can be replaced by a different barrier satisfying certain growth conditions (moving boundary). This, in particular, extends Sinai’s result on the survival exponent $\theta (1)=1/4$ for the integrated simple random walk to general random walks with some finite exponential moment.
LA - eng
KW - integrated brownian motion; integrated Lévy process; integrated random walk; lower tail probability; moving boundary; one-sided barrier problem; one-sided exit problem; persistence probabilities; survival exponent; fractionally integrated Lévy process; moving barrier; persistence exponent; random polynomials
UR - http://eudml.org/doc/272048
ER -
References
top- [1] R. F. Bass, N. Eisenbaum and Z. Shi. The most visited sites of symmetric stable processes. Probab. Theory Related Fields116 (2000) 391–404. Zbl0955.60073MR1749281
- [2] G. Baxter and M. D. Donsker. On the distribution of the supremum functional for processes with stationary independent increments. Trans. Amer. Math. Soc.85 (1957) 73–87. Zbl0078.32002MR84900
- [3] J. Bertoin. Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ. Press, Cambridge, 1996. Zbl0861.60003MR1406564
- [4] J. Bertoin. The inviscid Burgers equation with Brownian initial velocity. Comm. Math. Phys.193 (1998) 397–406. Zbl0917.60063MR1618139
- [5] N. H. Bingham. Maxima of sums of random variables and suprema of stable processes. Z. Wahrsch. Verw. Gebiete26 (1973) 273–296. Zbl0238.60036MR415780
- [6] F. Caravenna and J.-D. Deuschel. Pinning and wetting transition for -dimensional fields with Laplacian interaction. Ann. Probab.36 (2008) 2388–2433. Zbl1179.60066MR2478687
- [7] R. A. Doney. Spitzer’s condition and ladder variables in random walks. Probab. Theory Related Fields101 (1995) 577–580. Zbl0818.60060MR1327226
- [8] A. Dembo, B. Poonen, Q.-M. Shao and O. Zeitouni. Random polynomials having few or no real zeros. J. Amer. Math. Soc. 15 (2002) 857–892 (electronic). Zbl1002.60045MR1915821
- [9] J. D. Esary, F. Proschan and D. W. Walkup. Association of random variables, with applications. Ann. Math. Statist.38 (1967) 1466–1474. Zbl0183.21502MR217826
- [10] W. Feller. An Introduction to Probability Theory and Its Applications II, 2nd edition. Wiley, New York, 1971. Zbl0138.10207MR270403
- [11] M. Goldman. On the first passage of the integrated Wiener process. Ann. Math. Statist.42 (1971) 2150–2155. Zbl0271.60049MR297017
- [12] P. Groeneboom, G. Jongbloed and J. A. Wellner. Integrated Brownian motion, conditioned to be positive. Ann. Probab.27 (1999) 1283–1303. Zbl0983.60078MR1733148
- [13] Y. Isozaki and S. Watanabe. An asymptotic formula for the Kolmogorov diffusion and a refinement of Sinai’s estimates for the integral of Brownian motion. Proc. Japan Acad. Ser. A Math. Sci.70 (1994) 271–276. Zbl0820.60066MR1313176
- [14] J. Komlós, P. Major and G. Tusnády. An approximation of partial sums of independent ’s and the sample . I. Z. Wahrsch. Verw. Gebiete32 (1975) 111–131. Zbl0308.60029MR375412
- [15] A. Lachal. Sur le premier instant de passage de l’intégrale du mouvement Brownien. Ann. Inst. Henri Poincaré Probab. Stat.27 (1991) 385–405. Zbl0747.60075MR1131839
- [16] A. Lachal. Sur les excursions de l’intégrale du mouvement Brownien. C. R. Acad. Sci. Paris Sér. I Math.314 (1992) 1053–1056. Zbl0757.60075MR1168534
- [17] W. V. Li and Q.-M. Shao. A normal comparison inequality and its applications. Probab. Theory Related Fields122 (2002) 494–508. Zbl1004.60031MR1902188
- [18] W. V. Li and Q.-M. Shao. Lower tail probabilities for Gaussian processes. Ann. Probab.32 (2004) 216–242. Zbl1052.60028MR2040781
- [19] W. V. Li and Q.-M. Shao. Recent developments on lower tail probabilities for Gaussian processes. Cosmos1 (2005) 95–106. MR2329259
- [20] M. Lifshits. Gaussian Random Functions. Mathematics and Its Applications. Kluwer Academic, Dordrecht, 1995. Zbl0832.60002MR1472736
- [21] S. N. Majumdar. Persistence in nonequilibrium systems. Current Sci.77 (1999) 370–375.
- [22] H. P. McKean, Jr.A winding problem for a resonator driven by a white noise. J. Math. Kyoto Univ.2 (1963) 227–235. Zbl0119.34701MR156389
- [23] G. M. Molchan. Maximum of a fractional Brownian motion: Probabilities of small values. Comm. Math. Phys.205 (1999) 97–111. Zbl0942.60065MR1706900
- [24] G. M. Molchan. On the maximum of fractional Brownian motion. Teor. Veroyatn. Primen.44 (1999) 111–115. Zbl0966.60036MR1751192
- [25] G. M. Molchan. Unilateral small deviations of processes related to the fractional Brownian motion. Stochastic Process. Appl.118 (2008) 2085–2097. Zbl1151.60017MR2462290
- [26] I. Monroe. On embedding right continuous martingales in Brownian motion. Ann. Math. Statist.43 (1972) 1293–1311. Zbl0267.60050MR343354
- [27] A. A. Novikov. Estimates for and asymptotic behavior of the probabilities of a Wiener process not crossing a moving boundary. Mat. Sb. 110 (1979) 539–550 (in Russian). English translation in: Sb. Math. 38 (1981) 495–505. Zbl0462.60079MR562208
- [28] J. Obłój. The Skorokhod embedding problem and its offspring. Probab. Surv. 1 (2004) 321–390 (electronic). Zbl1189.60088MR2068476
- [29] T. Simon. The lower tail problem for homogeneous functionals of stable processes with no negative jumps. ALEA Lat. Am. J. Probab. Math. Stat. 3 (2007) 165–179 (electronic). Zbl1145.60027MR2349807
- [30] T. Simon. On the Hausdorff dimension of regular points of inviscid Burgers equation with stable initial data. J. Stat. Phys.131 (2008) 733–747. Zbl1155.35114MR2398951
- [31] Y. G. Sinai. Distribution of some functionals of the integral of a random walk. Teoret. Mat. Fiz.90 (1992) 323–353. Zbl0810.60063MR1182301
- [32] D. Slepian. The one-sided barrier problem for Gaussian noise. Bell System Tech. J.41 (1962) 463–501. MR133183
- [33] J. M. Steele. Stochastic Calculus and Financial Applications. Applications of Mathematics 45. Springer, New York, 2001. Zbl0962.60001MR1783083
- [34] K. Uchiyama. Brownian first exit from and sojourn over one sided moving boundary and application. Z. Wahrsch. Verw. Gebiete54 (1980) 75–116. Zbl0431.60080MR595482
- [35] V. Vysotsky. Clustering in a stochastic model of one-dimensional gas. Ann. Appl. Probab.18 (2008) 1026–1058. Zbl1141.60068MR2418237
- [36] V. Vysotsky. On the probability that integrated random walks stay positive. Stochastic Process. Appl.120 (2010) 1178–1193. Zbl1202.60070MR2639743
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.