Persistence of iterated partial sums
Amir Dembo; Jian Ding; Fuchang Gao
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 3, page 873-884
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topDembo, Amir, Ding, Jian, and Gao, Fuchang. "Persistence of iterated partial sums." Annales de l'I.H.P. Probabilités et statistiques 49.3 (2013): 873-884. <http://eudml.org/doc/272046>.
@article{Dembo2013,
abstract = {Let $S_\{n\}^\{(2)\}$ denote the iterated partial sums. That is, $S_\{n\}^\{(2)\}=S_\{1\}+S_\{2\}+\cdots +S_\{n\}$, where $S_\{i\}=X_\{1\}+X_\{2\}+\cdots +X_\{i\}$. Assuming $X_\{1\},X_\{2\},\ldots ,X_\{n\}$ are integrable, zero-mean, i.i.d. random variables, we show that the persistence probabilities \[p\_\{n\}^\{(2)\}:=\mathbb \{P\}\Bigl (\max \_\{1\le i\le n\}S\_\{i\}^\{(2)\}<0\Bigr )\le c\sqrt\{\frac\{\mathbb \{E\}|S\_\{n+1\}|\}\{(n+1)\mathbb \{E\}|X\_\{1\}|\}\},\]
with $c\le 6\sqrt\{30\}$ (and $c=2$ whenever $X_\{1\}$ is symmetric). The converse inequality holds whenever the non-zero $\min (-X_\{1\},0)$ is bounded or when it has only finite third moment and in addition $X_\{1\}$ is squared integrable. Furthermore, $p_\{n\}^\{(2)\}\asymp n^\{-1/4\}$ for any non-degenerate squared integrable, i.i.d., zero-mean $X_\{i\}$. In contrast, we show that for any $0<\gamma <1/4$ there exist integrable, zero-mean random variables for which the rate of decay of $p_\{n\}^\{(2)\}$ is $n^\{-\gamma \}$.},
author = {Dembo, Amir, Ding, Jian, Gao, Fuchang},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {first passage time; iterated partial sums; persistence; lower tail probability; one-sided probability; random walk},
language = {eng},
number = {3},
pages = {873-884},
publisher = {Gauthier-Villars},
title = {Persistence of iterated partial sums},
url = {http://eudml.org/doc/272046},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Dembo, Amir
AU - Ding, Jian
AU - Gao, Fuchang
TI - Persistence of iterated partial sums
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 3
SP - 873
EP - 884
AB - Let $S_{n}^{(2)}$ denote the iterated partial sums. That is, $S_{n}^{(2)}=S_{1}+S_{2}+\cdots +S_{n}$, where $S_{i}=X_{1}+X_{2}+\cdots +X_{i}$. Assuming $X_{1},X_{2},\ldots ,X_{n}$ are integrable, zero-mean, i.i.d. random variables, we show that the persistence probabilities \[p_{n}^{(2)}:=\mathbb {P}\Bigl (\max _{1\le i\le n}S_{i}^{(2)}<0\Bigr )\le c\sqrt{\frac{\mathbb {E}|S_{n+1}|}{(n+1)\mathbb {E}|X_{1}|}},\]
with $c\le 6\sqrt{30}$ (and $c=2$ whenever $X_{1}$ is symmetric). The converse inequality holds whenever the non-zero $\min (-X_{1},0)$ is bounded or when it has only finite third moment and in addition $X_{1}$ is squared integrable. Furthermore, $p_{n}^{(2)}\asymp n^{-1/4}$ for any non-degenerate squared integrable, i.i.d., zero-mean $X_{i}$. In contrast, we show that for any $0<\gamma <1/4$ there exist integrable, zero-mean random variables for which the rate of decay of $p_{n}^{(2)}$ is $n^{-\gamma }$.
LA - eng
KW - first passage time; iterated partial sums; persistence; lower tail probability; one-sided probability; random walk
UR - http://eudml.org/doc/272046
ER -
References
top- [1] F. Aurzada and C. Baumgarten. Survival probabilities of weighted random walks. ALEA Lat. Am. J. Probab. Math. Stat.8 (2011) 235–258. Zbl1276.60057MR2818568
- [2] F. Aurzada and S. Dereich. Universality of the asymptotics of the one-sided exit problem for integrated processes. Ann. Inst. Henri Poincaré Probab. Stat.49 (2013) 236–251. Zbl1285.60042MR3060155
- [3] F. Caravenna and J.-D. Deuschel. Pinning and wetting transition for -dimensional fields with Laplacian interaction. Ann. Probab.36 (2008) 2388–2433. Zbl1179.60066MR2478687
- [4] A. Dembo, B. Poonen, Q. Shao and O. Zeitouni. Random polynomials having few or no real zeros. J. Amer. Math. Soc.15 (2002) 857–892. Zbl1002.60045MR1915821
- [5] A. Devulder, Z. Shi and T. Simon. The lower tail problem for the area of a symmetric stable process. Unpublished manuscript, 2007.
- [6] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edition. Wiley, New York, 1971. Zbl0138.10207MR270403
- [7] W. V. Li and Q.-M. Shao. Recent developments on lower tail probabilities for Gaussian processes. Cosmos1 (2005) 95–106. MR2329259
- [8] H. P. McKean, Jr.A winding problem for a resonator driven by a white noise. J. Math. Kyoto Univ.2 (1963) 227–235. Zbl0119.34701MR156389
- [9] S. J. Montgomery-Smith. Comparison of sums of independent identically distributed random vectors. Probab. Math. Statist.14 (1993) 281–285. Zbl0827.60005MR1321767
- [10] T. Simon. The lower tail problem for homogeneous functionals of stable processes with no negative jumps. ALEA Lat. Am. J. Probab. Math. Stat.3 (2007) 165–179. Zbl1145.60027MR2349807
- [11] Ya. G. Sinai. Distribution of some functionals of the integral of a random walk. Theoret. Math. Phys.90 (1992) 219–241. Zbl0810.60063MR1182301
- [12] V. Vysotsky. Clustering in a stochastic model of one-dimensional gas. Ann. Appl. Probab.18 (2008) 1026–1058. Zbl1141.60068MR2418237
- [13] V. Vysotsky. On the probability that integrated random walks stay positive. Stochastic Process. Appl.120 (2010) 1178–1193. Zbl1202.60070MR2639743
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.