Persistence of iterated partial sums

Amir Dembo; Jian Ding; Fuchang Gao

Annales de l'I.H.P. Probabilités et statistiques (2013)

  • Volume: 49, Issue: 3, page 873-884
  • ISSN: 0246-0203

Abstract

top
Let S n ( 2 ) denote the iterated partial sums. That is, S n ( 2 ) = S 1 + S 2 + + S n , where S i = X 1 + X 2 + + X i . Assuming X 1 , X 2 , ... , X n are integrable, zero-mean, i.i.d. random variables, we show that the persistence probabilities p n ( 2 ) : = max 1 i n S i ( 2 ) l t ; 0 c 𝔼 | S n + 1 | ( n + 1 ) 𝔼 | X 1 | , with c 6 30 (and c = 2 whenever X 1 is symmetric). The converse inequality holds whenever the non-zero min ( - X 1 , 0 ) is bounded or when it has only finite third moment and in addition X 1 is squared integrable. Furthermore, p n ( 2 ) n - 1 / 4 for any non-degenerate squared integrable, i.i.d., zero-mean X i . In contrast, we show that for any 0 l t ; γ l t ; 1 / 4 there exist integrable, zero-mean random variables for which the rate of decay of p n ( 2 ) is n - γ .

How to cite

top

Dembo, Amir, Ding, Jian, and Gao, Fuchang. "Persistence of iterated partial sums." Annales de l'I.H.P. Probabilités et statistiques 49.3 (2013): 873-884. <http://eudml.org/doc/272046>.

@article{Dembo2013,
abstract = {Let $S_\{n\}^\{(2)\}$ denote the iterated partial sums. That is, $S_\{n\}^\{(2)\}=S_\{1\}+S_\{2\}+\cdots +S_\{n\}$, where $S_\{i\}=X_\{1\}+X_\{2\}+\cdots +X_\{i\}$. Assuming $X_\{1\},X_\{2\},\ldots ,X_\{n\}$ are integrable, zero-mean, i.i.d. random variables, we show that the persistence probabilities \[p\_\{n\}^\{(2)\}:=\mathbb \{P\}\Bigl (\max \_\{1\le i\le n\}S\_\{i\}^\{(2)\}&lt;0\Bigr )\le c\sqrt\{\frac\{\mathbb \{E\}|S\_\{n+1\}|\}\{(n+1)\mathbb \{E\}|X\_\{1\}|\}\},\] with $c\le 6\sqrt\{30\}$ (and $c=2$ whenever $X_\{1\}$ is symmetric). The converse inequality holds whenever the non-zero $\min (-X_\{1\},0)$ is bounded or when it has only finite third moment and in addition $X_\{1\}$ is squared integrable. Furthermore, $p_\{n\}^\{(2)\}\asymp n^\{-1/4\}$ for any non-degenerate squared integrable, i.i.d., zero-mean $X_\{i\}$. In contrast, we show that for any $0&lt;\gamma &lt;1/4$ there exist integrable, zero-mean random variables for which the rate of decay of $p_\{n\}^\{(2)\}$ is $n^\{-\gamma \}$.},
author = {Dembo, Amir, Ding, Jian, Gao, Fuchang},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {first passage time; iterated partial sums; persistence; lower tail probability; one-sided probability; random walk},
language = {eng},
number = {3},
pages = {873-884},
publisher = {Gauthier-Villars},
title = {Persistence of iterated partial sums},
url = {http://eudml.org/doc/272046},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Dembo, Amir
AU - Ding, Jian
AU - Gao, Fuchang
TI - Persistence of iterated partial sums
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 3
SP - 873
EP - 884
AB - Let $S_{n}^{(2)}$ denote the iterated partial sums. That is, $S_{n}^{(2)}=S_{1}+S_{2}+\cdots +S_{n}$, where $S_{i}=X_{1}+X_{2}+\cdots +X_{i}$. Assuming $X_{1},X_{2},\ldots ,X_{n}$ are integrable, zero-mean, i.i.d. random variables, we show that the persistence probabilities \[p_{n}^{(2)}:=\mathbb {P}\Bigl (\max _{1\le i\le n}S_{i}^{(2)}&lt;0\Bigr )\le c\sqrt{\frac{\mathbb {E}|S_{n+1}|}{(n+1)\mathbb {E}|X_{1}|}},\] with $c\le 6\sqrt{30}$ (and $c=2$ whenever $X_{1}$ is symmetric). The converse inequality holds whenever the non-zero $\min (-X_{1},0)$ is bounded or when it has only finite third moment and in addition $X_{1}$ is squared integrable. Furthermore, $p_{n}^{(2)}\asymp n^{-1/4}$ for any non-degenerate squared integrable, i.i.d., zero-mean $X_{i}$. In contrast, we show that for any $0&lt;\gamma &lt;1/4$ there exist integrable, zero-mean random variables for which the rate of decay of $p_{n}^{(2)}$ is $n^{-\gamma }$.
LA - eng
KW - first passage time; iterated partial sums; persistence; lower tail probability; one-sided probability; random walk
UR - http://eudml.org/doc/272046
ER -

References

top
  1. [1] F. Aurzada and C. Baumgarten. Survival probabilities of weighted random walks. ALEA Lat. Am. J. Probab. Math. Stat.8 (2011) 235–258. Zbl1276.60057MR2818568
  2. [2] F. Aurzada and S. Dereich. Universality of the asymptotics of the one-sided exit problem for integrated processes. Ann. Inst. Henri Poincaré Probab. Stat.49 (2013) 236–251. Zbl1285.60042MR3060155
  3. [3] F. Caravenna and J.-D. Deuschel. Pinning and wetting transition for ( 1 + 1 ) -dimensional fields with Laplacian interaction. Ann. Probab.36 (2008) 2388–2433. Zbl1179.60066MR2478687
  4. [4] A. Dembo, B. Poonen, Q. Shao and O. Zeitouni. Random polynomials having few or no real zeros. J. Amer. Math. Soc.15 (2002) 857–892. Zbl1002.60045MR1915821
  5. [5] A. Devulder, Z. Shi and T. Simon. The lower tail problem for the area of a symmetric stable process. Unpublished manuscript, 2007. 
  6. [6] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edition. Wiley, New York, 1971. Zbl0138.10207MR270403
  7. [7] W. V. Li and Q.-M. Shao. Recent developments on lower tail probabilities for Gaussian processes. Cosmos1 (2005) 95–106. MR2329259
  8. [8] H. P. McKean, Jr.A winding problem for a resonator driven by a white noise. J. Math. Kyoto Univ.2 (1963) 227–235. Zbl0119.34701MR156389
  9. [9] S. J. Montgomery-Smith. Comparison of sums of independent identically distributed random vectors. Probab. Math. Statist.14 (1993) 281–285. Zbl0827.60005MR1321767
  10. [10] T. Simon. The lower tail problem for homogeneous functionals of stable processes with no negative jumps. ALEA Lat. Am. J. Probab. Math. Stat.3 (2007) 165–179. Zbl1145.60027MR2349807
  11. [11] Ya. G. Sinai. Distribution of some functionals of the integral of a random walk. Theoret. Math. Phys.90 (1992) 219–241. Zbl0810.60063MR1182301
  12. [12] V. Vysotsky. Clustering in a stochastic model of one-dimensional gas. Ann. Appl. Probab.18 (2008) 1026–1058. Zbl1141.60068MR2418237
  13. [13] V. Vysotsky. On the probability that integrated random walks stay positive. Stochastic Process. Appl.120 (2010) 1178–1193. Zbl1202.60070MR2639743

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.