The scaling limits of a heavy tailed Markov renewal process
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 2, page 483-505
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topSohier, Julien. "The scaling limits of a heavy tailed Markov renewal process." Annales de l'I.H.P. Probabilités et statistiques 49.2 (2013): 483-505. <http://eudml.org/doc/271967>.
@article{Sohier2013,
abstract = {In this paper we consider heavy tailed Markov renewal processes and we prove that, suitably renormalised, they converge in law towards the $\alpha $-stable regenerative set. We then apply these results to the strip wetting model which is a random walk $S$ constrained above a wall and rewarded or penalized when it hits the strip $[0,\infty )\times [0,a]$ where $a$ is a given positive number. The convergence result that we establish allows to characterize the scaling limit of this process at criticality.},
author = {Sohier, Julien},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Heavy tailed Markov renewals processes; scaling limits; fluctuation theory for random walks; regenerative sets; Heavy tailed Markov renewal process; scaling limit; fluctuation theory; random walk; regenerative set},
language = {eng},
number = {2},
pages = {483-505},
publisher = {Gauthier-Villars},
title = {The scaling limits of a heavy tailed Markov renewal process},
url = {http://eudml.org/doc/271967},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Sohier, Julien
TI - The scaling limits of a heavy tailed Markov renewal process
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 2
SP - 483
EP - 505
AB - In this paper we consider heavy tailed Markov renewal processes and we prove that, suitably renormalised, they converge in law towards the $\alpha $-stable regenerative set. We then apply these results to the strip wetting model which is a random walk $S$ constrained above a wall and rewarded or penalized when it hits the strip $[0,\infty )\times [0,a]$ where $a$ is a given positive number. The convergence result that we establish allows to characterize the scaling limit of this process at criticality.
LA - eng
KW - Heavy tailed Markov renewals processes; scaling limits; fluctuation theory for random walks; regenerative sets; Heavy tailed Markov renewal process; scaling limit; fluctuation theory; random walk; regenerative set
UR - http://eudml.org/doc/271967
ER -
References
top- [1] S. Asmussen. Applied Probability and Queues, 2nd edition. Applications of Stochastic Modelling and Applied Probability 51. Springer, New York, 2003. Zbl1029.60001MR1978607
- [2] J. Bertoin. Subordinators: Examples and applications. In Lectures on Probability Theory and Statistics (Saint-Flour, 1997) 1–91. Lecture Notes in Math. 1717. Springer, Berlin, 1999. Zbl0955.60046MR1746300
- [3] A. N. Borodin and P. Salminen. Handbook of Brownian Motion – Facts and Formulae, 2nd edition. Probability and Its Applications. Birkhäuser, Basel, 2002. Zbl0859.60001MR1912205
- [4] F. Caravenna and J.-D. Deuschel. Pinning and wetting transition for -dimensional fields with Laplacian interaction. Ann. Probab.36 (2008) 2388–2433. Zbl1179.60066MR2478687
- [5] F. Caravenna and J.-D. Deuschel. Scaling limits of -dimensional pinning models with Laplacian interaction. Ann. Probab.37 (2009) 903–945. Zbl1185.60106MR2537545
- [6] F. Caravenna, G. Giacomin and L. Zambotti. Tightness conditions for polymer measures. Preprint, 2007. Available at arXiv.org:math/0702331. Zbl1138.60060
- [7] F. Caravenna, G. Giacomin and L. Zambotti. Sharp asymptotic behavior for wetting models in -dimension. Electron. J. Probab. 11 (2006) 345–362 (electronic). Zbl1112.60068MR2217821
- [8] F. Caravenna, G. Giacomin and L. Zambotti. Infinite volume limits of polymer chains with periodic charges. Markov Process. Related Fields13 (2007) 697–730. Zbl1138.60060MR2381597
- [9] E. Çinlar. Some joint distributions for Markov renewal processes. Aust. N. Z. J. Stat.10 (1968) 8–20. Zbl0162.48701MR233432
- [10] M. Cranston, L. Koralov, S. Molchanov and B. Vainberg. Continuous model for homopolymers. J. Funct. Anal.256 (2009) 2656–2696. Zbl1162.82031MR2502529
- [11] J.-D. Deuschel, G. Giacomin and L. Zambotti. Scaling limits of equilibrium wetting models in -dimension. Probab. Theory Related Fields132 (2005) 471–500. Zbl1084.60060MR2198199
- [12] R. A. Doney. One-sided local large deviation and renewal theorems in the case of infinite mean. Probab. Theory Related Fields107 (1997) 451–465. Zbl0883.60022MR1440141
- [13] R. A. Doney. Local behavior of first passage probabilities. Probab. Theory Related Fields5 (2010) 299–315. Zbl1237.60036MR2892956
- [14] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edition. Wiley, New York, 1971. Zbl0138.10207MR270403
- [15] P. J. Fitzsimmons, B. Fristedt and B. Maisonneuve. Intersections and limits of regenerative sets. Z. Wahrsch. Verw. Gebiete70 (1985) 157–173. Zbl0548.60084MR799144
- [16] G. Giacomin. Random Polymer Models. Imperial College Press, London, 2007. Zbl1125.82001MR2380992
- [17] P. E. Greenwood and W. Wefelmeyer. Empirical estimators for semi-Markov processes. Math. Meth. Statist.5 (1996) 299–315. Zbl0872.62038MR1417674
- [18] P. Lévy. Processus semi-markoviens. In Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, Vol. III 416–426. Erven P. Noordhoff N.V., Groningen, 1956. Zbl0073.34705MR88105
- [19] R. Pyke. Markov renewal processes with finitely many states. Ann. Math. Statist.32 (1961) 1243–1259. Zbl0201.49901MR154324
- [20] R. Pyke and R. Schaufele. Limit theorems for Markov renewal processes. Ann. Math. Statist.35 (1964) 1746–1764. Zbl0134.34602MR168026
- [21] W. L. Smith. Regenerative stochastic processes. Proc. R. Soc. Lond. Ser. A232 (1955) 6–31. Zbl0067.36301MR73877
- [22] J. Sohier. A functional limit convergence towards Brownian excursion. Preprint, 2010. Available at arXiv.org:1012.0118. Zbl1271.60095
- [23] J. Sohier. On pinning phenomena and random walk fluctuation theory. Ph.D. thesis, Univ. Paris 7, France, 2010. Available at http://hal.archives-ouvertes.fr/tel-00534716/.
- [24] M. Zerner. Quelques propriétés spectrales des opérateurs positifs. J. Funct. Anal.72 (1987) 381–417. Zbl0642.47031MR886819
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.