Homogenization results for a linear dynamics in random Glauber type environment

Cédric Bernardin

Annales de l'I.H.P. Probabilités et statistiques (2012)

  • Volume: 48, Issue: 3, page 792-818
  • ISSN: 0246-0203

Abstract

top
We consider an energy conserving linear dynamics that we perturb by a Glauber dynamics with random site dependent intensity. We prove hydrodynamic limits for this non-reversible system in random media. The diffusion coefficient turns out to depend on the random field only by its statistics. The diffusion coefficient defined through the Green–Kubo formula is also studied and its convergence to some homogenized diffusion coefficient is proved.

How to cite

top

Bernardin, Cédric. "Homogenization results for a linear dynamics in random Glauber type environment." Annales de l'I.H.P. Probabilités et statistiques 48.3 (2012): 792-818. <http://eudml.org/doc/271998>.

@article{Bernardin2012,
abstract = {We consider an energy conserving linear dynamics that we perturb by a Glauber dynamics with random site dependent intensity. We prove hydrodynamic limits for this non-reversible system in random media. The diffusion coefficient turns out to depend on the random field only by its statistics. The diffusion coefficient defined through the Green–Kubo formula is also studied and its convergence to some homogenized diffusion coefficient is proved.},
author = {Bernardin, Cédric},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {hydrodynamic limits; random media; Green–Kubo formula; homogenization; Green-Kubo formula},
language = {eng},
number = {3},
pages = {792-818},
publisher = {Gauthier-Villars},
title = {Homogenization results for a linear dynamics in random Glauber type environment},
url = {http://eudml.org/doc/271998},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Bernardin, Cédric
TI - Homogenization results for a linear dynamics in random Glauber type environment
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 3
SP - 792
EP - 818
AB - We consider an energy conserving linear dynamics that we perturb by a Glauber dynamics with random site dependent intensity. We prove hydrodynamic limits for this non-reversible system in random media. The diffusion coefficient turns out to depend on the random field only by its statistics. The diffusion coefficient defined through the Green–Kubo formula is also studied and its convergence to some homogenized diffusion coefficient is proved.
LA - eng
KW - hydrodynamic limits; random media; Green–Kubo formula; homogenization; Green-Kubo formula
UR - http://eudml.org/doc/271998
ER -

References

top
  1. [1] C. Bernardin. Hydrodynamics for a system of harmonic oscillators perturbed by a conservative noise. Stochastic Process. Appl.117 (2007) 487–513. Zbl1112.60075MR2305383
  2. [2] C. Bernardin. Thermal conductivity for a noisy disordered harmonic chain. J. Stat. Phys.133 (2008) 417–433. Zbl1161.82021MR2448630
  3. [3] C. Bernardin and S. Olla. Non-equilibrium macroscopic dynamics of chains of anharmonic oscillators. Unpublished manuscript. Available at http://www.ceremade.dauphine.fr/olla/springs. Zbl1231.82052
  4. [4] F. Bonetto, J. L. Lebowitz, J. Lukkarinen and S. Olla. Heat conduction and entropy production in anharmonic crystals with self-consistent stochastic reservoirs. J. Stat. Phys.134 (2009) 1097–1119. Zbl1173.82017MR2518984
  5. [5] G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications 44. Cambridge Univ. Press, Cambridge, 1992. Zbl0761.60052MR1207136
  6. [6] A. Faggionato. Bulk diffusion of 1D exclusion process with bond disorder. Markov Process. Related Fields13 (2007) 519–542. Zbl1144.60058MR2357386
  7. [7] A. Faggionato. Random walks and exclusion processes among random conductances on random infinite clusters: Homogenization and hydrodynamic limit. Electron. J. Probab.13 (2008) 2217–2247. Zbl1189.60172MR2469609
  8. [8] A. Faggionato and F. Martinelli. Hydrodynamic limit of a disordered lattice gas. Probab. Theory Related Fields127 (2003) 535–608. Zbl1052.60083MR2021195
  9. [9] A. Faggionato, M. Jara and C. Landim. Hydrodynamic behavior of 1D subdiffusive exclusion processes with random conductances. Probab. Theory Related Fields144 (2009) 633–667. Zbl1169.60326MR2496445
  10. [10] J. Fritz. Hydrodynamics in a symmetric random medium. Comm. Math. Phys.125 (1989) 13–25. Zbl0682.76001MR1017736
  11. [11] J. Fritz, T. Funaki and J. L. Lebowitz. Stationary states of random Hamiltonian systems. Probab. Theory Related Fields99 (1994) 211–236. Zbl0801.60093MR1278883
  12. [12] P. Gonçalves and M. Jara. Scaling limits for gradient systems in random environment. J. Stat. Phys.131 (2008) 691–716. Zbl1144.82043MR2398949
  13. [13] E. Hsu. Characterization of Brownian motion on manifolds through integration by parts. In Stein’s Method and Applications 195–208. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 5. Singapore Univ. Press, Singapore, 2005. MR2205337
  14. [14] M. Jara and C. Landim. Quenched nonequilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder. Ann. Inst. H. Poincaré Probab. Statist.44 (2008) 341–361. Zbl1195.60124MR2446327
  15. [15] C. Kipnis and C. Landim. Scaling Limits of Interacting Particle Systems. Springer, Berlin, 1999. Zbl0927.60002MR1707314
  16. [16] K. Nagy. Symmetric random walk in random environment in one dimension. Period. Math. Hungar.45 (2002) 101–120. Zbl1064.60202MR1955197
  17. [17] S. Olla. Central limit theorems for tagged particles and for diffusions in random environment. In Milieux Aléatoires 75–100. Panor. Synthèses 12. Soc. Math. France, Paris, 2001. Zbl1119.60302MR2226846
  18. [18] S. Olla, S. R. S. Varadhan and H. T. Yau. Hydrodynamic limit for a Hamiltonian system with weak noise. Comm. Math. Phys.155 (1993) 523–560. Zbl0781.60101MR1231642
  19. [19] J. Quastel. Diffusion in disordered media. In Nonlinear Stochastic PDEs (Minneapolis, MN, 1994) 65–79. IMA Vol. Math. Appl. 77. Springer, New York, 1996. Zbl0840.60093MR1395893
  20. [20] J. Quastel. Bulk diffusion in a system with site disorder. Ann. Probab.34 (2006) 1990–2036. Zbl1104.60066MR2271489
  21. [21] M. Reed and B. Simon. Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd edition. Academic Press, New York, 1980. Zbl0459.46001MR751959
  22. [22] S. R. S. Varadhan. Nonlinear diffusion limit for a system with nearest neighbor interactions. II. In Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals (Sanda/Kyoto, 1990) 75–128. Pitman Res. Notes Math. Ser. 283. Longman Sci. Tech., Harlow, 1993. Zbl0793.60105MR1354152

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.