Quenched non-equilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder

M. D. Jara; C. Landim

Annales de l'I.H.P. Probabilités et statistiques (2008)

  • Volume: 44, Issue: 2, page 341-361
  • ISSN: 0246-0203

Abstract

top
For a sequence of i.i.d. random variables {ξx: x∈ℤ} bounded above and below by strictly positive finite constants, consider the nearest-neighbor one-dimensional simple exclusion process in which a particle at x (resp. x+1) jumps to x+1 (resp. x) at rate ξx. We examine a quenched non-equilibrium central limit theorem for the position of a tagged particle in the exclusion process with bond disorder {ξx: x∈ℤ}. We prove that the position of the tagged particle converges under diffusive scaling to a gaussian process if the other particles are initially distributed according to a Bernoulli product measure associated to a smooth profile ρ0 : ℝ→[0, 1].

How to cite

top

Jara, M. D., and Landim, C.. "Quenched non-equilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder." Annales de l'I.H.P. Probabilités et statistiques 44.2 (2008): 341-361. <http://eudml.org/doc/77973>.

@article{Jara2008,
abstract = {For a sequence of i.i.d. random variables \{ξx: x∈ℤ\} bounded above and below by strictly positive finite constants, consider the nearest-neighbor one-dimensional simple exclusion process in which a particle at x (resp. x+1) jumps to x+1 (resp. x) at rate ξx. We examine a quenched non-equilibrium central limit theorem for the position of a tagged particle in the exclusion process with bond disorder \{ξx: x∈ℤ\}. We prove that the position of the tagged particle converges under diffusive scaling to a gaussian process if the other particles are initially distributed according to a Bernoulli product measure associated to a smooth profile ρ0 : ℝ→[0, 1].},
author = {Jara, M. D., Landim, C.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {hydrodynamic limit; tagged particle; non-equilibrium fluctuations; random environment; fractional brownian motion; non-equilibrium; fractional Brownian motion.},
language = {eng},
number = {2},
pages = {341-361},
publisher = {Gauthier-Villars},
title = {Quenched non-equilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder},
url = {http://eudml.org/doc/77973},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Jara, M. D.
AU - Landim, C.
TI - Quenched non-equilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 2
SP - 341
EP - 361
AB - For a sequence of i.i.d. random variables {ξx: x∈ℤ} bounded above and below by strictly positive finite constants, consider the nearest-neighbor one-dimensional simple exclusion process in which a particle at x (resp. x+1) jumps to x+1 (resp. x) at rate ξx. We examine a quenched non-equilibrium central limit theorem for the position of a tagged particle in the exclusion process with bond disorder {ξx: x∈ℤ}. We prove that the position of the tagged particle converges under diffusive scaling to a gaussian process if the other particles are initially distributed according to a Bernoulli product measure associated to a smooth profile ρ0 : ℝ→[0, 1].
LA - eng
KW - hydrodynamic limit; tagged particle; non-equilibrium fluctuations; random environment; fractional brownian motion; non-equilibrium; fractional Brownian motion.
UR - http://eudml.org/doc/77973
ER -

References

top
  1. [1] A. Faggionato. Bulk diffusion of 1D exclusion process with bond disorder. Markov Process. Related Fields 13 (2007) 519–542. Zbl1144.60058MR2357386
  2. [2] E. A. Carlen, S. Kusuoka and D. W. Stroock. Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Statist. 23 (1987) 245–287. Zbl0634.60066MR898496
  3. [3] E. B. Davies. Explicit constants for Gaussian upper bounds on heat kernels. Amer. J. Math. 109 (1987) 319–333. Zbl0659.35009MR882426
  4. [4] A. Faggionato and F. Martinelli. Hydrodynamic limit of a disordered lattice gas. Probab. Theory Related Fields 127 (2003) 535–608. Zbl1052.60083MR2021195
  5. [5] P. A. Ferrari, E. Presutti, E. Scacciatelli and M. E. Vares. The symmetric simple exclusion process I: Probability estimates. Stochastic Process. Appl. 39 (1991) 89–105. Zbl0749.60094MR1135087
  6. [6] G. Gielis, A. Koukkous and C. Landim. Equilibrium fluctuations for zero range processes in random environment. Stochastic Process. Appl. 77 (1998) 187–205. Zbl0935.60082MR1649004
  7. [7] R. A. Holley and D. W. Stroock. Generalized Onstein–Uhlenbeck processes and infinite branching Brownian motions. Kyoto Univ. R.I.M.S 14 (1978) 741–814. Zbl0412.60065MR527199
  8. [8] M. D. Jara and C. Landim. Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006) 567–577. Zbl1101.60080MR2259975
  9. [9] C. Kipnis and C. Landim. Scaling Limit of Interacting Particles. Springer, Berlin, 1999. MR1707314
  10. [10] C. Kipnis and S. R. S. Varadhan. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusion. Comm. Math. Phys. 106 (1986) 1–19. Zbl0588.60058MR834478
  11. [11] R. Kunnemann. The diffusion limit for reversible jump processes on ℤd with ergodic random bond conductivities. Comm. Math. Phys. 90 (1983) 27–68. Zbl0523.60097MR714611
  12. [12] C. Landim, S. Olla and S. R. S. Varadhan. Asymptotic behavior of a tagged particle in simple exclusion processes. Bol. Soc. Bras. Mat. 31 (2000) 241–275. Zbl0983.60100MR1817088
  13. [13] C. Landim and S. Volchan. Equilibrium fluctuations for driven tracer particle dynamics. Stochastic Process. Appl. 85 (2000) 139–158. Zbl0997.60121MR1730614
  14. [14] T. M. Liggett. Interacting Particle Systems. Springer, New York, 1985. Zbl0559.60078MR776231
  15. [15] I. Mitoma. Tightness of probabilities on C([0, 1]; S') and D([0, 1]; S'). Ann. Probab. 11 (1983) 989–999. Zbl0527.60004MR714961
  16. [16] K. Nagy. Symmetric random walk in random environment in one dimension. Period. Math. Hungar. 45 (2002) 101–120. Zbl1064.60202MR1955197
  17. [17] H. Rost and M. E. Vares. Hydrodynamics of a one-dimensional nearest neighbor model. Contemp. Math. 41 (1985) 329–342. Zbl0572.60095MR814722
  18. [18] V. Sidoravicius and A. Sznitman. Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields 129 (2004) 219–244. Zbl1070.60090MR2063376
  19. [19] H. Spohn. Large Scale Dynamics of Interacting Particles. Springer, Berlin, 1991. Zbl0742.76002
  20. [20] A. Sznitman. Random motions in random media. In Mathematical Statistical Physics 219–242. A. Bovier, F. Dunlop, F. den Hollander, A. van Enter and J. Dalibard (Eds). Les Houches, Session LXXXIII, 2005, Elsevier, 2005. 
  21. [21] D. W. Stroock and S. R. S. Varadhan. Multidimensional Diffusion Processes. Springer, Berlin–New York, 1979. Zbl0426.60069MR532498

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.