Product of exponentials and spectral radius of random k-circulants

Arup Bose; Rajat Subhra Hazra; Koushik Saha

Annales de l'I.H.P. Probabilités et statistiques (2012)

  • Volume: 48, Issue: 2, page 424-443
  • ISSN: 0246-0203

Abstract

top
We consider n × n random k-circulant matrices with n → ∞ and k = k(n) whose input sequence {al}l≥0 is independent and identically distributed (i.i.d.) random variables with finite (2 + δ) moment. We study the asymptotic distribution of the spectral radius, when n = kg + 1. For this, we first derive the tail behaviour of the g fold product of i.i.d. exponential random variables. Then using this tail behaviour result and appropriate normal approximation techniques, we show that with appropriate scaling and centering, the asymptotic distribution of the spectral radius is Gumbel. We also identify the centering and scaling constants explicitly.

How to cite

top

Bose, Arup, Hazra, Rajat Subhra, and Saha, Koushik. "Product of exponentials and spectral radius of random k-circulants." Annales de l'I.H.P. Probabilités et statistiques 48.2 (2012): 424-443. <http://eudml.org/doc/272018>.

@article{Bose2012,
abstract = {We consider n × n random k-circulant matrices with n → ∞ and k = k(n) whose input sequence \{al\}l≥0 is independent and identically distributed (i.i.d.) random variables with finite (2 + δ) moment. We study the asymptotic distribution of the spectral radius, when n = kg + 1. For this, we first derive the tail behaviour of the g fold product of i.i.d. exponential random variables. Then using this tail behaviour result and appropriate normal approximation techniques, we show that with appropriate scaling and centering, the asymptotic distribution of the spectral radius is Gumbel. We also identify the centering and scaling constants explicitly.},
author = {Bose, Arup, Hazra, Rajat Subhra, Saha, Koushik},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {eigenvalues; Gumbel distribution; k-circulant matrix; Laplace asymptotics; large dimensional random matrix; linear process; normal approximation; spectral radius; spectral density; tail of product},
language = {eng},
number = {2},
pages = {424-443},
publisher = {Gauthier-Villars},
title = {Product of exponentials and spectral radius of random k-circulants},
url = {http://eudml.org/doc/272018},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Bose, Arup
AU - Hazra, Rajat Subhra
AU - Saha, Koushik
TI - Product of exponentials and spectral radius of random k-circulants
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 2
SP - 424
EP - 443
AB - We consider n × n random k-circulant matrices with n → ∞ and k = k(n) whose input sequence {al}l≥0 is independent and identically distributed (i.i.d.) random variables with finite (2 + δ) moment. We study the asymptotic distribution of the spectral radius, when n = kg + 1. For this, we first derive the tail behaviour of the g fold product of i.i.d. exponential random variables. Then using this tail behaviour result and appropriate normal approximation techniques, we show that with appropriate scaling and centering, the asymptotic distribution of the spectral radius is Gumbel. We also identify the centering and scaling constants explicitly.
LA - eng
KW - eigenvalues; Gumbel distribution; k-circulant matrix; Laplace asymptotics; large dimensional random matrix; linear process; normal approximation; spectral radius; spectral density; tail of product
UR - http://eudml.org/doc/272018
ER -

References

top
  1. [1] R. Adamczak. A few remarks on the operator norm of random Toeplitz matrices. J. Theoret. Probab.23 (2008) 85–108. Zbl1191.15030MR2591905
  2. [2] A. Auffinger, G. Ben Arous and S. Peche. Poisson convergence for the largest eigenvalues of heavy tailed random matrices. Ann. Inst. H. Poincaré Probab. Statist.45 (2009) 859–610. Zbl1177.15037MR2548495
  3. [3] Z. D. Bai, J. Silverstein and Y. Q. Yin. A note on the largest eigenvalue of a large dimensional sample covariance matrix. J. Multivariate Anal.26 (1988) 166–168. Zbl0652.60040MR963829
  4. [4] Z. D. Bai and Y. Q. Yin. Limiting behavior of the norm of products of random matrices and two problems of Geman–Hwang. Probab. Theory Related Fields73 (1986) 555–569. Zbl0586.60021MR863545
  5. [5] Z. D. Bai and Y. Q. Yin. Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix. Ann. Probab.16 (1988) 1729–1741. Zbl0677.60038MR958213
  6. [6] Z. D. Bai and Y. Q. Yin. Limit of the smallest eigenvalue of a large dimensional sample covariance matrix. Ann. Probab.21 (1993) 1275–1294. Zbl0779.60026MR1235416
  7. [7] A. Bose, R. S. Hazra and K. Saha. Spectral norm of circulant type matrices. J. Theoret. Probab.24 (2011) 479–516. Zbl1241.60006MR2795050
  8. [8] A. Bose, R. S. Hazra and K. Saha. Spectral norm of circulant type matrices with heavy tailed entries. Electron. Comm. Probab.15 (2010) 299–313. Zbl1226.60008MR2670197
  9. [9] A. Bose, J. Mitra and A. Sen. Large dimensional random k circulants. Technical Report R10/2008, Stat-Math Unit, Indian Statistical Institute, Kolkata, 2008. Available at www.isical.ac.in/~statmath. 
  10. [10] A. Bose, J. Mitra and A. Sen. Large dimensional random k circulants. J. Theoret. Probab. (2012). To appear. DOI:10.1007/s10959-010-0312-9. MR2956212
  11. [11] A. Bose and A. Sen. Spectral norm of random large dimensional noncentral Toeplitz and Hankel matrices. Electron. Comm. Probab.12 (2007) 29–35. Zbl1130.60042MR2284045
  12. [12] W. Bryc, A. Dembo and T. Jiang. Spectral measure of large random Hankel, Markov and Toeplitz matrices. Ann. Probab. 34 (2006) 1–38. Zbl1094.15009MR2206341
  13. [13] W. Bryc and S. Sethuraman. A remark on the maximum eigenvalue for circulant matrices. In High Dimensional Probabilities V: The Luminy Volume 179–184. IMS Collections 5. Institute of Mathematical Statistics, Beachwood, OH, 2009. Zbl1243.60006MR2797947
  14. [14] J. Chen and M.-Q. Liu. Optimal mixed-level k-circulant supersaturated designs. J. Statist. Plann. Inference138 (2008) 4151–4157. Zbl1146.62055MR2455995
  15. [15] R. A. Davis and T. Mikosch. The maximum of the periodogram of a non-Gaussian sequence. Ann. Probab.27 (1999) 522–536. Zbl1073.62556MR1681157
  16. [16] P. Embrechts, C. Kluppelberg and T. Mikosch. Modelling Extremal Events in Insurance and Finance. Springer, Berlin, 1997. Zbl0873.62116MR1458613
  17. [17] A. Erdélyi. Asymptotics Expansions. Dover, New York, 1956. Zbl0070.29002MR78494
  18. [18] J. Galambos and I. Simonelli. Products of Random Variables: Applications to Problems of Physics and to Arithmetical Functions. Marcel Dekker, New York, 2004. Zbl1172.60300MR2077249
  19. [19] S. Geman. A limit theorem for the norm of random matrices. Ann. Probab.8 (1980) 252–261. Zbl0428.60039MR566592
  20. [20] S. Geman. The spectral radius of large random matrices. Ann. Probab.14 (1986) 1318–1328. Zbl0605.60037MR866352
  21. [21] S. Georgiou and C. Koukouvinos. Multi-level k-circulant supersaturated designs. Metrika64 (2006) 209–220. Zbl1100.62076MR2259223
  22. [22] E. Kostlan. On the spectra of Gaussian matrices. Linear Algebra Appl. 162/164 (1992) 385–388. Zbl0748.15024MR1148410
  23. [23] Z. Lin and W. Liu. On maxima of periodograms of stationary processes. Ann. Statist.37 (2009) 2676–2695. Zbl1206.62017MR2541443
  24. [24] Z. A. Lomnicki. On the distribution of products of random variables. J. Roy. Statist. Soc. Ser. B29 (1967) 513–524. Zbl0161.37801MR222928
  25. [25] M. W. Meckes. On the spectral norm of a random Toeplitz matrix. Electron. Comm. Probab.12 (2007) 315–325. Zbl1130.15018MR2342710
  26. [26] S. Resnick. Extreme Values, Regular Variation and Point Processes. Applied Probability: A Series of the Applied Probability Trust 4. Springer, New York, 1987. Zbl0633.60001MR900810
  27. [27] B. Rider. A limit theorem at the edge of a non-Hermitian random matrix ensemble. J. Phys. A36 (2003) 3401–3409. Zbl1039.60037MR1986426
  28. [28] H. Rootzèn. Extreme value theory for moving average processes. Ann. Probab.14 (1986) 612–652. Zbl0604.60019MR832027
  29. [29] J. W. Silverstein. The smallest eigenvalue of a large dimensional Wishart matrix. Ann. Probab.13 (1985) 1364–1368. Zbl0591.60025MR806232
  30. [30] J. W. Silverstein. On the weak limit of the largest eigenvalue of a large dimensional sample covariance matrix. J. Multivariate Anal.30 (1989) 307–311. Zbl0692.60022MR1015375
  31. [31] J. W. Silverstein. The spectral radii and norms of large-dimensional non-central random matrices. Comm. Statist. Stochastic Models10 (1994) 525–532. Zbl0806.15018MR1284550
  32. [32] A. Soshnikov. Poisson statistics for the largest eigenvalues of Wigner random matrices with heavy tails. Electron. Comm. Probab.9 (2004) 82–91. Zbl1060.60013MR2081462
  33. [33] A. Soshnikov. Poisson statistics for the largest eigenvalues in random matrix ensembles. In Mathematical Physics of Quantum Mechanics 351–364. Lecture Notes in Phys. 690. Springer, Berlin, 2006. Zbl1169.15302MR2234922
  34. [34] M. D. Springer and W. E. Thompson. The distribution of products of Beta, Gamma and Gaussian random variables. SIAM J. Appl. Math. 18 (1970) 721–737. Zbl0198.23703MR264733
  35. [35] V. V. Strok. Circulant matrices and the spectra of de Bruijn graphs. Ukrainian Math. J.44 (1992) 1446–1454. Zbl0788.05068MR1213901
  36. [36] Q. Tang. From light tails to heavy tails through multiplier. Extremes11 (2008) 379–391. Zbl1199.60040MR2453346
  37. [37] C. A. Tracy and H. Widom. The distribution of the largest eigenvalue in the Gaussian ensembles: β = 1, 2, 4. In Calogero–Moser–Sutherland Models 461–472. Springer, New York, 2000. MR1844228
  38. [38] A. M. Walker. Some asymtotic results for the periodogram of a stationary time series. J. Austral. Math. Soc.5 (1965) 107–128. Zbl0128.38701MR177457
  39. [39] Y. K. Wu, R. Z. Jia and Q. Li. g-circulant solutions to the (0, 1) matrix equation Am = Jn. Linear Algebra Appl.345 (2002) 195–224. Zbl0998.15015MR1883273
  40. [40] Y. Q. Yin, Z. D. Bai and P. R. Krishnaiah. Limiting behavior of the eigenvalues of a multivariate F matrix. J. Multivariate Anal.13 (1983) 508–516. Zbl0531.62018MR727036
  41. [41] Y. Q. Yin, Z. D. Bai and P. R. Krishnaiah. On the limit of the largest eigenvalue of the large dimensional sample covariance matrix. Probab. Theory Related Fields78 (1988) 509–521. Zbl0627.62022MR950344
  42. [42] J. T. Zhou. A formula solution for the eigenvalues of g circulant matrices. Math. Appl. (Wuhan) 9 (1996) 53–57. Zbl0947.15500MR1384201

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.