Microscopic concavity and fluctuation bounds in a class of deposition processes

Márton Balázs; Júlia Komjáthy; Timo Seppäläinen

Annales de l'I.H.P. Probabilités et statistiques (2012)

  • Volume: 48, Issue: 1, page 151-187
  • ISSN: 0246-0203

Abstract

top
We prove fluctuation bounds for the particle current in totally asymmetric zero range processes in one dimension with nondecreasing, concave jump rates whose slope decays exponentially. Fluctuations in the characteristic directions have order of magnitude t1/3. This is in agreement with the expectation that these systems lie in the same KPZ universality class as the asymmetric simple exclusion process. The result is via a robust argument formulated for a broad class of deposition-type processes. Besides this class of zero range processes, hypotheses of this argument have also been verified in the authors’ earlier papers for the asymmetric simple exclusion and the constant rate zero range processes, and are currently under development for a bricklayers process with exponentially increasing jump rates.

How to cite

top

Balázs, Márton, Komjáthy, Júlia, and Seppäläinen, Timo. "Microscopic concavity and fluctuation bounds in a class of deposition processes." Annales de l'I.H.P. Probabilités et statistiques 48.1 (2012): 151-187. <http://eudml.org/doc/272024>.

@article{Balázs2012,
abstract = {We prove fluctuation bounds for the particle current in totally asymmetric zero range processes in one dimension with nondecreasing, concave jump rates whose slope decays exponentially. Fluctuations in the characteristic directions have order of magnitude t1/3. This is in agreement with the expectation that these systems lie in the same KPZ universality class as the asymmetric simple exclusion process. The result is via a robust argument formulated for a broad class of deposition-type processes. Besides this class of zero range processes, hypotheses of this argument have also been verified in the authors’ earlier papers for the asymmetric simple exclusion and the constant rate zero range processes, and are currently under development for a bricklayers process with exponentially increasing jump rates.},
author = {Balázs, Márton, Komjáthy, Júlia, Seppäläinen, Timo},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {interacting particle systems; universal fluctuation bounds; t1/3-scaling; second class particle; convexity; asymmetric simple exclusion; zero range process; scaling; KPZ model; microscopic concavity hypothesis; Tracy-Widom distributions and processes; determinantal representation},
language = {eng},
number = {1},
pages = {151-187},
publisher = {Gauthier-Villars},
title = {Microscopic concavity and fluctuation bounds in a class of deposition processes},
url = {http://eudml.org/doc/272024},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Balázs, Márton
AU - Komjáthy, Júlia
AU - Seppäläinen, Timo
TI - Microscopic concavity and fluctuation bounds in a class of deposition processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 1
SP - 151
EP - 187
AB - We prove fluctuation bounds for the particle current in totally asymmetric zero range processes in one dimension with nondecreasing, concave jump rates whose slope decays exponentially. Fluctuations in the characteristic directions have order of magnitude t1/3. This is in agreement with the expectation that these systems lie in the same KPZ universality class as the asymmetric simple exclusion process. The result is via a robust argument formulated for a broad class of deposition-type processes. Besides this class of zero range processes, hypotheses of this argument have also been verified in the authors’ earlier papers for the asymmetric simple exclusion and the constant rate zero range processes, and are currently under development for a bricklayers process with exponentially increasing jump rates.
LA - eng
KW - interacting particle systems; universal fluctuation bounds; t1/3-scaling; second class particle; convexity; asymmetric simple exclusion; zero range process; scaling; KPZ model; microscopic concavity hypothesis; Tracy-Widom distributions and processes; determinantal representation
UR - http://eudml.org/doc/272024
ER -

References

top
  1. [1] E. D. Andjel. Invariant measures for the zero range processes. Ann. Probab.10 (1982) 525–547. Zbl0492.60096MR659526
  2. [2] C. Bahadoran, H. Guiol, K. Ravishankar and E. Saada. Euler hydrodynamics of one-dimensional attractive particle systems. Ann. Probab.34 (2006) 1339–1369. Zbl1101.60075MR2257649
  3. [3] J. Baik, P. Deift and K. Johansson. On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc.12 (1999) 1119–1178. Zbl0932.05001MR1682248
  4. [4] J. Baik and E. M. Rains. Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys.100 (2000) 523–541. Zbl0976.82043MR1788477
  5. [5] M. Balázs. Growth fluctuations in a class of deposition models. Ann. Inst. H. Poincaré Probab. Statist.39 (2003) 639–685. Zbl1029.60075MR1983174
  6. [6] M. Balázs, E. Cator and T. Seppäläinen. Cube root fluctuations for the corner growth model associated to the exclusion process. Electron. J. Probab. 11 (2006) 1094–1132 (electronic). Zbl1139.60046MR2268539
  7. [7] M. Balázs and J. Komjáthy. Order of current variance and diffusivity in the rate one totally asymmetric zero range process. J. Stat. Phys.133 (2008) 59–78. Zbl1151.82381MR2438897
  8. [8] M. Balázs, F. Rassoul-Agha and T. Seppäläinen. The random average process and random walk in a space–time random environment in one dimension. Comm. Math. Phys.266 (2006) 499–545. Zbl1129.60097MR2238887
  9. [9] M. Balázs, F. Rassoul-Agha, T. Seppäläinen and S. Sethuraman. Existence of the zero range process and a deposition model with superlinear growth rates. Ann. Probab.35 (2007) 1201–1249. Zbl1138.60340MR2330972
  10. [10] M. Balázs and T. Seppäläinen. A convexity property of expectations under exponential weights. Available at http://arxiv.org/abs/0707.4273, 2007. Zbl1147.82348
  11. [11] M. Balázs and T. Seppäläinen. Exact connections between current fluctuations and the second class particle in a class of deposition models. J. Stat. Phys.127 (2007) 431–455. Zbl1147.82348MR2314355
  12. [12] M. Balázs and T. Seppäläinen. Fluctuation bounds for the asymmetric simple exclusion process. ALEA Lat. Am. J. Probab. Math. Stat. VI (2009) 1–24. Zbl1160.60333MR2485877
  13. [13] M. Balázs and T. Seppäläinen. Order of current variance and diffusivity in the asymmetric simple exclusion process. Ann. of Math.171 (2010) 1237–1265. Zbl1200.60083MR2630064
  14. [14] A. Borodin, P. L. Ferrari, M. Prähofer and T. Sasamoto. Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys.129 (2007) 1055–1080. Zbl1136.82028MR2363389
  15. [15] E. Cator and P. Groeneboom. Second class particles and cube root asymptotics for Hammersley’s process. Ann. Probab.34 (2006) 1273–1295. Zbl1101.60076MR2257647
  16. [16] C. Cocozza-Thivent. Processus des misanthropes. Z. Wahrsch. Verw. Gebiete70 (1985) 509–523. Zbl0554.60097MR807334
  17. [17] D. Dürr, S. Goldstein and J. Lebowitz. Asymptotics of particle trajectories in infinite one-dimensional systems with collisions. Comm. Pure Appl. Math.38 (1985) 573–597. Zbl0578.60094MR803248
  18. [18] P. A. Ferrari and L. R. G. Fontes. Current fluctuations for the asymmetric simple exclusion process. Ann. Probab.22 (1994) 820–832. Zbl0806.60099MR1288133
  19. [19] P. A. Ferrari and L. R. G. Fontes. Fluctuations of a surface submitted to a random average process. Electron. J. Probab. 3 (1998) pp. 34 (electronic). Zbl0903.60089MR1624854
  20. [20] P. L. Ferrari and H. Spohn. Scaling limit for the space–time covariance of the stationary totally asymmetric simple exclusion process. Comm. Math. Phys.265 (2006) 1–44. Zbl1118.82032MR2217295
  21. [21] J. Gravner, C. A. Tracy and H. Widom. Limit theorems for height fluctuations in a class of discrete space and time growth models. J. Stat. Phys.102 (2001) 1085–1132. Zbl0989.82030MR1830441
  22. [22] K. Johansson. Shape fluctuations and random matrices. Comm. Math. Phys.209 (2000) 437–476. Zbl0969.15008MR1737991
  23. [23] K. Johansson. Discrete polynuclear growth and determinantal processes. Comm. Math. Phys.242 (2003) 277–329. Zbl1031.60084MR2018275
  24. [24] S. Karlin. Total Positivity. Vol. I. Stanford University Press, Stanford, CA, 1968. Zbl0219.47030MR230102
  25. [25] R. Kumar. Space–time current process for independent random walks in one dimension. ALEA Lat. Am. J. Probab. Math. Stat. IV (2008) 307–336. Zbl1162.60345MR2456971
  26. [26] T. M. Liggett. An infinite particle system with zero range interactions. Ann. Probab.1 (1973) 240–253. Zbl0264.60083MR381039
  27. [27] T. M. Liggett. Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 276. Springer-Verlag, New York, 1985. Zbl0559.60078MR776231
  28. [28] M. Prähofer and H. Spohn. Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108 (2002) 1071–1106. Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays. Zbl1025.82010MR1933446
  29. [29] J. Quastel and B. Valkó. t1/3 Superdiffusivity of finite-range asymmetric exclusion processes on ℤ. Comm. Math. Phys. 273 (2007) 379–394. Zbl1127.60091MR2318311
  30. [30] J. Quastel and B. Valkó. A note on the diffusivity of finite-range asymmetric exclusion processes on ℤ. In In and Out Equilibrium 2 543–550. V. Sidoravicius and M. E. Vares (Eds). Progress in Probability 60. Birkhäuser, Basel, 2008. Zbl1173.82341MR2477398
  31. [31] F. Rezakhanlou. Hydrodynamic limit for attractive particle systems on Zd. Comm. Math. Phys.140 (1991) 417–448. Zbl0738.60098MR1130693
  32. [32] T. Seppäläinen. Second-order fluctuations and current across characteristic for a one-dimensional growth model of independent random walks. Ann. Probab.33 (2005) 759–797. Zbl1108.60083MR2123209
  33. [33] F. Spitzer. Interaction of Markov processes. Advances in Math.5 (1970) 246–290. Zbl0312.60060MR268959
  34. [34] C. A. Tracy and H. Widom. Total current fluctuations in the asymmetric simple exclusion process. J. Math. Phys. 50 095204, 2009. Zbl1241.82051MR2566884

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.