Growth fluctuations in a class of deposition models

Márton Balázs

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 4, page 639-685
  • ISSN: 0246-0203

How to cite

top

Balázs, Márton. "Growth fluctuations in a class of deposition models." Annales de l'I.H.P. Probabilités et statistiques 39.4 (2003): 639-685. <http://eudml.org/doc/77776>.

@article{Balázs2003,
author = {Balázs, Márton},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {current fluctuations; second class particles; coupling methods},
language = {eng},
number = {4},
pages = {639-685},
publisher = {Elsevier},
title = {Growth fluctuations in a class of deposition models},
url = {http://eudml.org/doc/77776},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Balázs, Márton
TI - Growth fluctuations in a class of deposition models
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 4
SP - 639
EP - 685
LA - eng
KW - current fluctuations; second class particles; coupling methods
UR - http://eudml.org/doc/77776
ER -

References

top
  1. [1] P.A. Ferrari, L.R.G. Fontes, Current fluctuations for the asymmetric simple exclusion process, Ann. Probab.22 (1994) 820-832. Zbl0806.60099MR1288133
  2. [2] M. Prähofer, H. Spohn, Current Fluctuations for the Totally Asymmetric Simple Exclusion Process, Progress of Probab.: In and out Equilibrium; Probability with a Physics Flavor, 51, Birkhäuser, 2002. Zbl1015.60093MR1901953
  3. [3] B. Tóth, B. Valkó, Between equilibrium fluctuations and eulerian scaling: perturbation of equilibrium for a class of deposition models, J. Stat. Phys.109 (1/2) (2002) 177-205. Zbl1027.82031MR1927918
  4. [4] B. Tóth, W. Werner, Hydrodynamic Equations for a Deposition Model, Progress of Probab.: In and out Equilibrium; Probability with a Physics Flavor, 51, Birkhäuser, 2002. Zbl1013.35053MR1901955
  5. [5] F. Rezakhanlou, Microscopic structure of shocks in one conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéaire12 (2) (1995) 119-153. Zbl0836.76046MR1326665
  6. [6] P.A. Ferrari, Shock fluctuations in asymmetric simple exclusion, Probab. Theory Related Fields91 (1992) 81-102. Zbl0744.60117MR1142763
  7. [7] T.M. Liggett, Existence theorems for infinite particle systems, Trans. Amer. Math. Soc.165 (1972) 471-481. Zbl0239.60072MR309218
  8. [8] E.D. Andjel, Invariant measures for the zero range process, Ann. Probab.10 (3) (1982) 325-547. Zbl0492.60096MR659526
  9. [9] F. Spitzer, Interaction of markov processes, Adv. Math.5 (1970) 246-290. Zbl0312.60060MR268959
  10. [10] T.M. Liggett, Interacting Particle Systems, Springer-Verlag, 1985. Zbl0559.60078MR776231
  11. [11] C. Quant, On the construction and stationary distributions of some spatial queueing and particle systems, Ph.D. Thesis, Utrecht University, 2002. 
  12. [12] J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco, 1965. Zbl0137.11301MR198505
  13. [13] M. Balázs, Microscopic shape of shocks in a domain growth model, J. Stat. Phys.105 (3/4) (2001) 511-524. Zbl1017.82035MR1871655
  14. [14] T.M. Liggett, Coupling the simple exclusion process, Ann. Probab.4 (1976) 339-356. Zbl0339.60091MR418291
  15. [15] T.M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, Springer-Verlag, 1999. Zbl0949.60006MR1717346
  16. [16] J. Lamperti, Probability: A Survey of the Mathematical Theory, Benjamin, 1966. Zbl0147.15502MR206996
  17. [17] S.C. Port, C.J. Stone, Infinite particle systems, Trans. Amer. Math. Soc.178 (1973) 307-340. Zbl0283.60057MR326868

NotesEmbed ?

top

You must be logged in to post comments.