The local relaxation flow approach to universality of the local statistics for random matrices

László Erdős; Benjamin Schlein; Horng-Tzer Yau; Jun Yin

Annales de l'I.H.P. Probabilités et statistiques (2012)

  • Volume: 48, Issue: 1, page 1-46
  • ISSN: 0246-0203

Abstract

top
We present a generalization of the method of the local relaxation flow to establish the universality of local spectral statistics of a broad class of large random matrices. We show that the local distribution of the eigenvalues coincides with the local statistics of the corresponding Gaussian ensemble provided the distribution of the individual matrix element is smooth and the eigenvalues {xj}j=1N are close to their classical location {γj}j=1N determined by the limiting density of eigenvalues. Under the scaling where the typical distance between neighboring eigenvalues is of order 1/N, the necessary apriori estimate on the location of eigenvalues requires only to know that 𝔼 | x j - γ j | 2 - 1 - ε on average. This information can be obtained by well established methods for various matrix ensembles. We demonstrate the method by proving local spectral universality for sample covariance matrices.

How to cite

top

Erdős, László, et al. "The local relaxation flow approach to universality of the local statistics for random matrices." Annales de l'I.H.P. Probabilités et statistiques 48.1 (2012): 1-46. <http://eudml.org/doc/272033>.

@article{Erdős2012,
abstract = {We present a generalization of the method of the local relaxation flow to establish the universality of local spectral statistics of a broad class of large random matrices. We show that the local distribution of the eigenvalues coincides with the local statistics of the corresponding Gaussian ensemble provided the distribution of the individual matrix element is smooth and the eigenvalues \{xj\}j=1N are close to their classical location \{γj\}j=1N determined by the limiting density of eigenvalues. Under the scaling where the typical distance between neighboring eigenvalues is of order 1/N, the necessary apriori estimate on the location of eigenvalues requires only to know that $\mathbb \{E\}|x_\{j\}-\gamma _\{j\}|^\{2\}^\{-1-\varepsilon \}$ on average. This information can be obtained by well established methods for various matrix ensembles. We demonstrate the method by proving local spectral universality for sample covariance matrices.},
author = {Erdős, László, Schlein, Benjamin, Yau, Horng-Tzer, Yin, Jun},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random matrix; sample covariance matrix; Wishart matrix; Wigner–Dyson statistics; Wigner-Dyson statistics},
language = {eng},
number = {1},
pages = {1-46},
publisher = {Gauthier-Villars},
title = {The local relaxation flow approach to universality of the local statistics for random matrices},
url = {http://eudml.org/doc/272033},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Erdős, László
AU - Schlein, Benjamin
AU - Yau, Horng-Tzer
AU - Yin, Jun
TI - The local relaxation flow approach to universality of the local statistics for random matrices
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 1
SP - 1
EP - 46
AB - We present a generalization of the method of the local relaxation flow to establish the universality of local spectral statistics of a broad class of large random matrices. We show that the local distribution of the eigenvalues coincides with the local statistics of the corresponding Gaussian ensemble provided the distribution of the individual matrix element is smooth and the eigenvalues {xj}j=1N are close to their classical location {γj}j=1N determined by the limiting density of eigenvalues. Under the scaling where the typical distance between neighboring eigenvalues is of order 1/N, the necessary apriori estimate on the location of eigenvalues requires only to know that $\mathbb {E}|x_{j}-\gamma _{j}|^{2}^{-1-\varepsilon }$ on average. This information can be obtained by well established methods for various matrix ensembles. We demonstrate the method by proving local spectral universality for sample covariance matrices.
LA - eng
KW - random matrix; sample covariance matrix; Wishart matrix; Wigner–Dyson statistics; Wigner-Dyson statistics
UR - http://eudml.org/doc/272033
ER -

References

top
  1. [1] D. G. Aronson. Removable singularities for linear parabolic equations. Arch. Ration. Mech. Anal.17 (1964) 79–84. Zbl0128.09402MR177206
  2. [2] D. Bakry and M. Émery. Diffusions hypercontractives. In Séminaire de probabilités, XIX, 1983/84 177–206. Lecture Notes in Math. 1123. Springer, Berlin, 1985. Zbl0561.60080MR889476
  3. [3] G. Ben Arous and S. Péché. Universality of local eigenvalue statistics for some sample covariance matrices. Comm. Pure Appl. Math. LVIII (2005) 1–42. Zbl1075.62014MR2162782
  4. [4] G. Ben Arous and S. Péché. Private communication. 
  5. [5] P. Bleher and A. Its. Semiclassical asymptotics of orthogonal polynomials, Riemann–Hilbert problem, and universality in the matrix model. Ann. of Math. 150 (1999) 185–266. Zbl0956.42014MR1715324
  6. [6] E. Brézin and S. Hikami. Correlations of nearby levels induced by a random potential. Nucl. Phys. B 479 (1996) 697–706; Spectral form factor in a random matrix theory. Phys. Rev. E 55 (1997) 4067–4083. Zbl0925.82117MR1418841
  7. [7] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach. Courant Lecture Notes in Math. 3. Amer. Math. Soc., Providence, RI, 1999. Zbl0997.47033MR1677884
  8. [8] P. Deift and D. Gioev. Random Matrix Theory: Invariant Ensembles and Universality. Courant Lecture Notes in Math. 18. Amer. Math. Soc., Providence, RI, 2009. Zbl1171.15023MR2514781
  9. [9] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides and X. Zhou. Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math.52 (1999) 1335–1425. Zbl0944.42013MR1702716
  10. [10] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides and X. Zhou. Strong asymptotics of orthogonal polynomials with respect to exponential weights. Comm. Pure Appl. Math.52 (1999) 1491–1552. Zbl1026.42024MR1711036
  11. [11] I. Dumitriu and A. Edelman. Matrix models for beta-ensembles. J. Math. Phys.43 (2002) 5830–5847. Zbl1060.82020MR1936554
  12. [12] F. J. Dyson. A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys.3 (1962) 1191–1198. Zbl0111.32703MR148397
  13. [13] F. J. Dyson. Correlations between eigenvalues of a random matrix. Comm. Math. Phys.19 (1970) 235–250. Zbl0221.62019MR278668
  14. [14] L. Erdős, G. Péché, J. Ramírez, B. Schlein and H.-T. Yau. Bulk universality for Wigner matrices. Comm. Pure Appl. Math.63 (2010) 895–925. Zbl1216.15025MR2662426
  15. [15] L. Erdős, J. Ramírez, B. Schlein, T. Tao, V. Vu and H.-T. Yau. Bulk universality for Wigner Hermitian matrices with subexponential decay. Int. Math. Res. Not.2010 (2010) 436–479. Zbl1204.15043MR2661171
  16. [16] L. Erdős, J. Ramirez, B. Schlein and H.-T. Yau. Universality of sine-kernel for Wigner matrices with a small Gaussian perturbation. Electron. J. Probab.15 (2010) 526–604. Zbl1225.15034MR2639734
  17. [17] L. Erdős, B. Schlein and H.-T. Yau. Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Probab.37 (2009) 815–852. Zbl1175.15028MR2537522
  18. [18] L. Erdős, B. Schlein and H.-T. Yau. Local semicircle law and complete delocalization for Wigner random matrices. Comm. Math. Phys.287 (2009) 641–655. Zbl1186.60005MR2481753
  19. [19] L. Erdős, B. Schlein and H.-T. Yau. Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Not.2010 (2010) 436-479. Zbl1204.15043MR2587574
  20. [20] L. Erdős, B. Schlein and H.-T. Yau. Universality of random matrices and local relaxation flow. Preprint. Available at arXiv:0907.5605. Zbl1225.15033MR2810797
  21. [21] L. Erdős, H.-T. Yau and J. Yin. Bulk universality for generalized Wigner matrices. Preprint. Available at arXiv:1001.3453. Zbl1277.15026MR2981427
  22. [22] O. Feldheim and S. Sodin. A universality result for the smallest eigenvalues of certain sample covariance matrices. Preprint. Available at arXiv:0812.1961. Zbl1198.60011MR2647136
  23. [23] P. Forrester. Log-Gases and Random Matrices. London Mathematical Socity Monographs Series 34. Princeton Univ. Press, Princeton, NJ. Zbl1217.82003MR2641363
  24. [24] M. Fukushima, Y. Oshima and M. Takeda. Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter, Berlin, 1994. Zbl1227.31001MR1303354
  25. [25] A. Guionnet. Large random matrices: Lectures on macroscopic asymptotics. In École d’Été de Probabilités de Saint-Flour XXXVI-2006. Lecture Notes in Math. 1957. Springer, Berlin, 2009. Zbl1168.60003MR2498298
  26. [26] K. Johansson. Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Comm. Math. Phys.215 (2001) 683–705. Zbl0978.15020MR1810949
  27. [27] K. Johansson. Universality for certain Hermitian Wigner matrices under weak moment conditions. Preprint. Available at arXiv:0910.4467. Zbl1279.60014MR2919198
  28. [28] M. Ledoux. The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 89. Amer. Math. Soc., Providence, RI, 2001. Zbl0995.60002MR1849347
  29. [29] V. A. Marchenko and L. Pastur. The distribution of eigenvalues in a certain set of random matrices. Mat. Sb.72 (1967) 507–536. Zbl0152.16101MR208649
  30. [30] M. L. Mehta. Random Matrices. Academic Press, New York, 1991. Zbl0780.60014MR1083764
  31. [31] M. L. Mehta and M. Gaudin. On the density of eigenvalues of a random matrix. Nuclear Phys.18 (1960) 420–427. Zbl0107.35702MR112895
  32. [32] L. Pastur and M. Shcherbina. Bulk universality and related properties of Hermitian matrix models. J. Stat. Phys.130 (2008) 205–250. Zbl1136.15015MR2375744
  33. [33] S. Péché. Universality results for largest eigenvalues of some sample covariance matrix ensembles. Probab. Theory Related Fields143 (2009) 481–516. Zbl1167.62019MR2475670
  34. [34] A. Ruzmaikina. Universality of the edge distribution of eigenvalues of Wigner random matrices with polynomially decaying distributions of entries. Comm. Math. Phys.261 (2006) 277–296. Zbl1130.82313MR2191882
  35. [35] Y. Sinai and A. Soshnikov. A refinement of Wigner’s semicircle law in a neighborhood of the spectrum edge. Funct. Anal. Appl.32 (1998) 114–131. Zbl0930.15025MR1647832
  36. [36] S. Sodin. The spectral edge of some random band matrices. Preprint. Available at arXiv:0906.4047. Zbl1210.15039MR2726110
  37. [37] A. Soshnikov. Universality at the edge of the spectrum in Wigner random matrices. Comm. Math. Phys.207 (1999) 697–733. Zbl1062.82502MR1727234
  38. [38] S. Péché and A. Soshnikov. Wigner random matrices with non-symmetrically distributed entries. J. Stat. Phys.129 (2007) 857–884. Zbl1139.82019MR2363385
  39. [39] T. Tao and V. Vu. Random matrices: Universality of the local eigenvalue statistics. Preprint. Available at arXiv:0906.0510. Zbl1217.15043MR2784665
  40. [40] T. Tao and V. Vu. Random matrices: Universality of local eigenvalue statistics up to the edge. Preprint. Available at arXiv:0908.1982. Zbl1202.15038MR2669449
  41. [41] T. Tao and V. Vu. Random covariance matrices: Universality of local statistics of eigenvalues. Preprint. Available at arXiv:0912.0966. Zbl1247.15036MR2962092
  42. [42] V. Vu. Spectral norm of random matrices. Combinatorica27 (2007) 721–736. Zbl1164.05066MR2384414
  43. [43] E. Wigner. Characteristic vectors of bordered matrices with infinite dimensions. Ann. of Math.62 (1955) 548–564. Zbl0067.08403MR77805
  44. [44] H. T. Yau. Relative entropy and the hydrodynamics of Ginzburg–Landau models. Lett. Math. Phys.22 (1991) 63–80. Zbl0725.60120MR1121850

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.