Hydrodynamic limit of a d-dimensional exclusion process with conductances

Fábio Júlio Valentim

Annales de l'I.H.P. Probabilités et statistiques (2012)

  • Volume: 48, Issue: 1, page 188-211
  • ISSN: 0246-0203

Abstract

top
Fix a polynomial Φ of the form Φ(α) = α + ∑2≤j≤m  aj  αk=1j with Φ'(1) gt; 0. We prove that the evolution, on the diffusive scale, of the empirical density of exclusion processes on 𝕋 d , with conductances given by special class of functionsW, is described by the unique weak solution of the non-linear parabolic partial differential equation ∂tρ = ∑d  ∂xk  ∂Wk  Φ(ρ). We also derive some properties of the operator ∑k=1d  ∂xk  ∂Wk.

How to cite

top

Valentim, Fábio Júlio. "Hydrodynamic limit of a d-dimensional exclusion process with conductances." Annales de l'I.H.P. Probabilités et statistiques 48.1 (2012): 188-211. <http://eudml.org/doc/272035>.

@article{Valentim2012,
abstract = {Fix a polynomial Φ of the form Φ(α) = α + ∑2≤j≤m  aj  αk=1j with Φ'(1) gt; 0. We prove that the evolution, on the diffusive scale, of the empirical density of exclusion processes on $\{\mathbb \{T\}\}^\{d\}$ , with conductances given by special class of functionsW, is described by the unique weak solution of the non-linear parabolic partial differential equation ∂tρ = ∑d  ∂xk  ∂Wk  Φ(ρ). We also derive some properties of the operator ∑k=1d  ∂xk  ∂Wk.},
author = {Valentim, Fábio Júlio},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {exclusion processes; random conductances; hydrodynamic limit},
language = {eng},
number = {1},
pages = {188-211},
publisher = {Gauthier-Villars},
title = {Hydrodynamic limit of a d-dimensional exclusion process with conductances},
url = {http://eudml.org/doc/272035},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Valentim, Fábio Júlio
TI - Hydrodynamic limit of a d-dimensional exclusion process with conductances
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 1
SP - 188
EP - 211
AB - Fix a polynomial Φ of the form Φ(α) = α + ∑2≤j≤m  aj  αk=1j with Φ'(1) gt; 0. We prove that the evolution, on the diffusive scale, of the empirical density of exclusion processes on ${\mathbb {T}}^{d}$ , with conductances given by special class of functionsW, is described by the unique weak solution of the non-linear parabolic partial differential equation ∂tρ = ∑d  ∂xk  ∂Wk  Φ(ρ). We also derive some properties of the operator ∑k=1d  ∂xk  ∂Wk.
LA - eng
KW - exclusion processes; random conductances; hydrodynamic limit
UR - http://eudml.org/doc/272035
ER -

References

top
  1. [1] E. B. Dynkin. Markov Processes, Vol. II. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 122. Springer, Berlin, 1965. Zbl0132.37901
  2. [2] A. Faggionato. Random walks and exclusion processs among random conductances on random infinite clusters: Homogenization and hydrodynamic limit. Electron. J. Probab. 13 (2008) 2217–2247. Available at arXiv:0704.3020v3. Zbl1189.60172MR2469609
  3. [3] A. Faggionato, M. Jara and C. Landim. Hydrodynamic behavior of one dimensional subdiffusive exclusion processes with random conductances. Probab. Theory Related Fields 144 (2009) 633–667. Available at arXiv:0709.0306. Zbl1169.60326MR2496445
  4. [4] W. Feller. On second order differential operators. Ann. Math. (2) 61 (1955) 90–105. Zbl0064.11301MR68082
  5. [5] W. Feller. Generalized second order differential operators and their lateral conditions. Illinois J. Math.1 (1957) 459–504. Zbl0077.29102MR92046
  6. [6] T. Franco and C. Landim. Hydrodynamic limit of gradient exclusion processes with conductances. Arch. Ration. Mech. Anal.195 (2010) 409–439. Zbl1192.82062MR2592282
  7. [7] M. Jara and C. Landim. Quenched nonequilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder. Ann. Inst. H. Poincaré Probab. Statist. 44 (2008) 341–361. Available at arXiv:math/0603653. Zbl1195.60124MR2446327
  8. [8] C. Kipnis and C. Landim. Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 320. Springer, Berlin, 1999. Zbl0927.60002MR1707314
  9. [9] P. Mandl. Analytical Treatment of One-Dimensional Markov Processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 151. Springer, Berlin, 1968. Zbl0179.47802MR247667
  10. [10] A. B. Simas and F. J. Valentim. W-Sobolev spaces: Theory, homogenization and applications. Preprint, 2009. Available at arXiv:0911.4177. Zbl1221.35017MR2805508

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.