Hydrodynamic limit of a d-dimensional exclusion process with conductances
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 1, page 188-211
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topValentim, Fábio Júlio. "Hydrodynamic limit of a d-dimensional exclusion process with conductances." Annales de l'I.H.P. Probabilités et statistiques 48.1 (2012): 188-211. <http://eudml.org/doc/272035>.
@article{Valentim2012,
abstract = {Fix a polynomial Φ of the form Φ(α) = α + ∑2≤j≤m
aj
αk=1j with Φ'(1) gt; 0. We prove that the evolution, on the diffusive scale, of the empirical density of exclusion processes on $\{\mathbb \{T\}\}^\{d\}$ , with conductances given by special class of functionsW, is described by the unique weak solution of the non-linear parabolic partial differential equation ∂tρ = ∑d
∂xk
∂Wk
Φ(ρ). We also derive some properties of the operator ∑k=1d
∂xk
∂Wk.},
author = {Valentim, Fábio Júlio},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {exclusion processes; random conductances; hydrodynamic limit},
language = {eng},
number = {1},
pages = {188-211},
publisher = {Gauthier-Villars},
title = {Hydrodynamic limit of a d-dimensional exclusion process with conductances},
url = {http://eudml.org/doc/272035},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Valentim, Fábio Júlio
TI - Hydrodynamic limit of a d-dimensional exclusion process with conductances
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 1
SP - 188
EP - 211
AB - Fix a polynomial Φ of the form Φ(α) = α + ∑2≤j≤m
aj
αk=1j with Φ'(1) gt; 0. We prove that the evolution, on the diffusive scale, of the empirical density of exclusion processes on ${\mathbb {T}}^{d}$ , with conductances given by special class of functionsW, is described by the unique weak solution of the non-linear parabolic partial differential equation ∂tρ = ∑d
∂xk
∂Wk
Φ(ρ). We also derive some properties of the operator ∑k=1d
∂xk
∂Wk.
LA - eng
KW - exclusion processes; random conductances; hydrodynamic limit
UR - http://eudml.org/doc/272035
ER -
References
top- [1] E. B. Dynkin. Markov Processes, Vol. II. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 122. Springer, Berlin, 1965. Zbl0132.37901
- [2] A. Faggionato. Random walks and exclusion processs among random conductances on random infinite clusters: Homogenization and hydrodynamic limit. Electron. J. Probab. 13 (2008) 2217–2247. Available at arXiv:0704.3020v3. Zbl1189.60172MR2469609
- [3] A. Faggionato, M. Jara and C. Landim. Hydrodynamic behavior of one dimensional subdiffusive exclusion processes with random conductances. Probab. Theory Related Fields 144 (2009) 633–667. Available at arXiv:0709.0306. Zbl1169.60326MR2496445
- [4] W. Feller. On second order differential operators. Ann. Math. (2) 61 (1955) 90–105. Zbl0064.11301MR68082
- [5] W. Feller. Generalized second order differential operators and their lateral conditions. Illinois J. Math.1 (1957) 459–504. Zbl0077.29102MR92046
- [6] T. Franco and C. Landim. Hydrodynamic limit of gradient exclusion processes with conductances. Arch. Ration. Mech. Anal.195 (2010) 409–439. Zbl1192.82062MR2592282
- [7] M. Jara and C. Landim. Quenched nonequilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder. Ann. Inst. H. Poincaré Probab. Statist. 44 (2008) 341–361. Available at arXiv:math/0603653. Zbl1195.60124MR2446327
- [8] C. Kipnis and C. Landim. Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 320. Springer, Berlin, 1999. Zbl0927.60002MR1707314
- [9] P. Mandl. Analytical Treatment of One-Dimensional Markov Processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 151. Springer, Berlin, 1968. Zbl0179.47802MR247667
- [10] A. B. Simas and F. J. Valentim. W-Sobolev spaces: Theory, homogenization and applications. Preprint, 2009. Available at arXiv:0911.4177. Zbl1221.35017MR2805508
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.