Representation formula for the entropy and functional inequalities
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 3, page 885-899
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topLehec, Joseph. "Representation formula for the entropy and functional inequalities." Annales de l'I.H.P. Probabilités et statistiques 49.3 (2013): 885-899. <http://eudml.org/doc/272062>.
@article{Lehec2013,
abstract = {We prove a stochastic formula for the Gaussian relative entropy in the spirit of Borell’s formula for the Laplace transform. As an application, we give simple proofs of a number of functional inequalities.},
author = {Lehec, Joseph},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {gaussian measure; entropy; functional inequalities; Girsanov’s formula; Gaussian measure; Girsanov's formula},
language = {eng},
number = {3},
pages = {885-899},
publisher = {Gauthier-Villars},
title = {Representation formula for the entropy and functional inequalities},
url = {http://eudml.org/doc/272062},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Lehec, Joseph
TI - Representation formula for the entropy and functional inequalities
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 3
SP - 885
EP - 899
AB - We prove a stochastic formula for the Gaussian relative entropy in the spirit of Borell’s formula for the Laplace transform. As an application, we give simple proofs of a number of functional inequalities.
LA - eng
KW - gaussian measure; entropy; functional inequalities; Girsanov’s formula; Gaussian measure; Girsanov's formula
UR - http://eudml.org/doc/272062
ER -
References
top- [1] K. Ball. Convex geometry and functional analysis. In Handbook of the Geometry of Banach Spaces, Vol. 1 161–194. W. B. Johnson and J. Lindenstrauss (Eds). North-Holland, Amsterdam, 2001. Zbl1017.46004MR1863692
- [2] F. Barthe. On a reverse form of the Brascamp–Lieb inequality. Invent. Math.134 (1998) 335–361. Zbl0901.26010MR1650312
- [3] F. Barthe and N. Huet. On Gaussian Brunn–Minkowski inequalities. Studia Math.191 (2009) 283–304. Zbl1166.60014MR2481898
- [4] F. Baudoin. Conditioned stochastic differential equations: Theory, examples and application to finance. Stochastic Process. Appl.100 (2002) 109–145. Zbl1058.60040MR1919610
- [5] C. Borell. Diffusion equations and geometric inequalities. Potential Anal.12 (2000) 49–71. Zbl0976.60065MR1745333
- [6] M. Boué and P. Dupuis. A variational representation for certain functionals of Brownian motion. Ann. Probab.26 (1998) 1641–1659. Zbl0936.60059MR1675051
- [7] H. J. Brascamp and E. H. Lieb. Best constants in Young’s inequality, its converse and its generalization to more than three functions. Adv. Math.20 (1976) 151–173. Zbl0339.26020MR412366
- [8] M. Capitaine, E. P. Hsu and M. Ledoux. Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces. Electron. Commun. Probab.2 (1997) 71–81. Zbl0890.60045MR1484557
- [9] E. Carlen and D. Cordero-Erausquin. Subadditivity of the entropy and its relation to Brascamp–Lieb type inequalities. Geom. Funct. Anal.19 (2009) 373–405. Zbl1231.26015MR2545242
- [10] D. Cordero-Erausquin and M. Ledoux. The geometry of Euclidean convolution inequalities and entropy. Proc. Amer. Math. Soc.138 (2010) 2755–2769. Zbl1196.42007MR2644890
- [11] A. Dembo, T. M. Cover and J. A. Thomas. Information theoretic inequalities. IEEE Trans. Inform. Theory37 (1991) 1501–1518. Zbl0741.94001MR1134291
- [12] D. Feyel and A. S. Üstünel. Measure transport on Wiener space and the Girsanov theorem. C. R. Math. Acad. Sci. Paris334 (2002) 1025–1028. Zbl1036.60004MR1913729
- [13] W. H. Fleming and H. M. Soner. Controlled Markov Processes and Viscosity Solutions, 2nd edition. Stochastic Modelling and Applied Probability 25. Springer, New York, 2006. Zbl1105.60005MR2179357
- [14] H. Föllmer. An entropy approach to the time reversal of diffusion processes. In Stochastic Differential Systems (Marseille-Luminy, 1984) 156–163. Lecture Notes in Control and Inform. Sci. 69. Springer, Berlin, 1985. Zbl0562.60083MR798318
- [15] H. Föllmer. Time reversal on Wiener space. In Stochastic Processes – Mathematics and Physics (Bielefeld, 1984) 119–129. Lecture Notes in Math. 1158. Springer, Berlin, 1986. Zbl0582.60078MR838561
- [16] H. Föllmer. Random fields and diffusion processes. In École d’Été de Probabilités de Saint-Flour XV–XVII, 1985–87101–203. Lecture Notes in Math. 1362. Springer, Berlin, 1988. Zbl0661.60063MR983373
- [17] L. Gross. Logarithmic Sobolev inequalities. Amer. J. Math.97 (1975) 1061–1083. Zbl0318.46049MR420249
- [18] R. S. Liptser and A. N. Shiryayev. Statistics of Random Processes, Vol. 1: General Theory. Applications of Mathematics 5. Springer, New York, 1977. Zbl0364.60004MR474486
- [19] D. Nualart. The Malliavin Calculus and Related Topics, 2nd edition. Probability and Its Applications. Springer, Berlin, 2006. Zbl0837.60050MR2200233
- [20] L. C. G. Rogers and D. Williams. Diffusions, Markov Processes, and Martingales, Vol. 2: Itô Calculus. Cambridge Mathematical Library. Cambridge Univ. Press, Cambridge, 2000. Zbl0977.60005MR1780932
- [21] K. T. Sturm. On the geometry of metric measure spaces. I. Acta Math.196 (2006) 65–131. Zbl1105.53035MR2237206
- [22] M. Talagrand. Transportation cost for Gaussian and other product measures. Geom. Funct. Anal.6 (1996) 587–600. Zbl0859.46030MR1392331
- [23] S. R. S. Varadhan. Large Deviations and Applications. CBMS–NSF Regional Conference Series in Applied Mathematics 46. SIAM, Philadelphia, 1984. Zbl0549.60023MR758258
- [24] C. Villani. Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften 338. Springer, Berlin, 2009. Zbl1156.53003MR2459454
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.