Representation formula for the entropy and functional inequalities

Joseph Lehec

Annales de l'I.H.P. Probabilités et statistiques (2013)

  • Volume: 49, Issue: 3, page 885-899
  • ISSN: 0246-0203

Abstract

top
We prove a stochastic formula for the Gaussian relative entropy in the spirit of Borell’s formula for the Laplace transform. As an application, we give simple proofs of a number of functional inequalities.

How to cite

top

Lehec, Joseph. "Representation formula for the entropy and functional inequalities." Annales de l'I.H.P. Probabilités et statistiques 49.3 (2013): 885-899. <http://eudml.org/doc/272062>.

@article{Lehec2013,
abstract = {We prove a stochastic formula for the Gaussian relative entropy in the spirit of Borell’s formula for the Laplace transform. As an application, we give simple proofs of a number of functional inequalities.},
author = {Lehec, Joseph},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {gaussian measure; entropy; functional inequalities; Girsanov’s formula; Gaussian measure; Girsanov's formula},
language = {eng},
number = {3},
pages = {885-899},
publisher = {Gauthier-Villars},
title = {Representation formula for the entropy and functional inequalities},
url = {http://eudml.org/doc/272062},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Lehec, Joseph
TI - Representation formula for the entropy and functional inequalities
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 3
SP - 885
EP - 899
AB - We prove a stochastic formula for the Gaussian relative entropy in the spirit of Borell’s formula for the Laplace transform. As an application, we give simple proofs of a number of functional inequalities.
LA - eng
KW - gaussian measure; entropy; functional inequalities; Girsanov’s formula; Gaussian measure; Girsanov's formula
UR - http://eudml.org/doc/272062
ER -

References

top
  1. [1] K. Ball. Convex geometry and functional analysis. In Handbook of the Geometry of Banach Spaces, Vol. 1 161–194. W. B. Johnson and J. Lindenstrauss (Eds). North-Holland, Amsterdam, 2001. Zbl1017.46004MR1863692
  2. [2] F. Barthe. On a reverse form of the Brascamp–Lieb inequality. Invent. Math.134 (1998) 335–361. Zbl0901.26010MR1650312
  3. [3] F. Barthe and N. Huet. On Gaussian Brunn–Minkowski inequalities. Studia Math.191 (2009) 283–304. Zbl1166.60014MR2481898
  4. [4] F. Baudoin. Conditioned stochastic differential equations: Theory, examples and application to finance. Stochastic Process. Appl.100 (2002) 109–145. Zbl1058.60040MR1919610
  5. [5] C. Borell. Diffusion equations and geometric inequalities. Potential Anal.12 (2000) 49–71. Zbl0976.60065MR1745333
  6. [6] M. Boué and P. Dupuis. A variational representation for certain functionals of Brownian motion. Ann. Probab.26 (1998) 1641–1659. Zbl0936.60059MR1675051
  7. [7] H. J. Brascamp and E. H. Lieb. Best constants in Young’s inequality, its converse and its generalization to more than three functions. Adv. Math.20 (1976) 151–173. Zbl0339.26020MR412366
  8. [8] M. Capitaine, E. P. Hsu and M. Ledoux. Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces. Electron. Commun. Probab.2 (1997) 71–81. Zbl0890.60045MR1484557
  9. [9] E. Carlen and D. Cordero-Erausquin. Subadditivity of the entropy and its relation to Brascamp–Lieb type inequalities. Geom. Funct. Anal.19 (2009) 373–405. Zbl1231.26015MR2545242
  10. [10] D. Cordero-Erausquin and M. Ledoux. The geometry of Euclidean convolution inequalities and entropy. Proc. Amer. Math. Soc.138 (2010) 2755–2769. Zbl1196.42007MR2644890
  11. [11] A. Dembo, T. M. Cover and J. A. Thomas. Information theoretic inequalities. IEEE Trans. Inform. Theory37 (1991) 1501–1518. Zbl0741.94001MR1134291
  12. [12] D. Feyel and A. S. Üstünel. Measure transport on Wiener space and the Girsanov theorem. C. R. Math. Acad. Sci. Paris334 (2002) 1025–1028. Zbl1036.60004MR1913729
  13. [13] W. H. Fleming and H. M. Soner. Controlled Markov Processes and Viscosity Solutions, 2nd edition. Stochastic Modelling and Applied Probability 25. Springer, New York, 2006. Zbl1105.60005MR2179357
  14. [14] H. Föllmer. An entropy approach to the time reversal of diffusion processes. In Stochastic Differential Systems (Marseille-Luminy, 1984) 156–163. Lecture Notes in Control and Inform. Sci. 69. Springer, Berlin, 1985. Zbl0562.60083MR798318
  15. [15] H. Föllmer. Time reversal on Wiener space. In Stochastic Processes – Mathematics and Physics (Bielefeld, 1984) 119–129. Lecture Notes in Math. 1158. Springer, Berlin, 1986. Zbl0582.60078MR838561
  16. [16] H. Föllmer. Random fields and diffusion processes. In École d’Été de Probabilités de Saint-Flour XV–XVII, 1985–87101–203. Lecture Notes in Math. 1362. Springer, Berlin, 1988. Zbl0661.60063MR983373
  17. [17] L. Gross. Logarithmic Sobolev inequalities. Amer. J. Math.97 (1975) 1061–1083. Zbl0318.46049MR420249
  18. [18] R. S. Liptser and A. N. Shiryayev. Statistics of Random Processes, Vol. 1: General Theory. Applications of Mathematics 5. Springer, New York, 1977. Zbl0364.60004MR474486
  19. [19] D. Nualart. The Malliavin Calculus and Related Topics, 2nd edition. Probability and Its Applications. Springer, Berlin, 2006. Zbl0837.60050MR2200233
  20. [20] L. C. G. Rogers and D. Williams. Diffusions, Markov Processes, and Martingales, Vol. 2: Itô Calculus. Cambridge Mathematical Library. Cambridge Univ. Press, Cambridge, 2000. Zbl0977.60005MR1780932
  21. [21] K. T. Sturm. On the geometry of metric measure spaces. I. Acta Math.196 (2006) 65–131. Zbl1105.53035MR2237206
  22. [22] M. Talagrand. Transportation cost for Gaussian and other product measures. Geom. Funct. Anal.6 (1996) 587–600. Zbl0859.46030MR1392331
  23. [23] S. R. S. Varadhan. Large Deviations and Applications. CBMS–NSF Regional Conference Series in Applied Mathematics 46. SIAM, Philadelphia, 1984. Zbl0549.60023MR758258
  24. [24] C. Villani. Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften 338. Springer, Berlin, 2009. Zbl1156.53003MR2459454

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.