Stochastic domination : the contact process, Ising models and FKG measures
Thomas M. Liggett; Jeffrey E. Steif
Annales de l'I.H.P. Probabilités et statistiques (2006)
- Volume: 42, Issue: 2, page 223-243
- ISSN: 0246-0203
Access Full Article
topHow to cite
topLiggett, Thomas M., and Steif, Jeffrey E.. "Stochastic domination : the contact process, Ising models and FKG measures." Annales de l'I.H.P. Probabilités et statistiques 42.2 (2006): 223-243. <http://eudml.org/doc/77895>.
@article{Liggett2006,
author = {Liggett, Thomas M., Steif, Jeffrey E.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {2},
pages = {223-243},
publisher = {Elsevier},
title = {Stochastic domination : the contact process, Ising models and FKG measures},
url = {http://eudml.org/doc/77895},
volume = {42},
year = {2006},
}
TY - JOUR
AU - Liggett, Thomas M.
AU - Steif, Jeffrey E.
TI - Stochastic domination : the contact process, Ising models and FKG measures
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 2
SP - 223
EP - 243
LA - eng
UR - http://eudml.org/doc/77895
ER -
References
top- [1] V. Belitsky, P. Ferrari, N. Konno, T.M. Liggett, A strong correlation inequality for contact processes and oriented percolation, Stochastic Process Appl.67 (1997) 213-225. Zbl0890.60094MR1449832
- [2] I. Benjamini, R. Lyons, Y. Peres, O. Schramm, Group-invariant percolation on graphs, Geom. Funct. Anal.9 (1999) 29-66. Zbl0924.43002MR1675890
- [3] J. van den Berg, O. Häggström, J. Kahn, Some conditional correlation inequalities for percolation and related processes, Rand. Structures Algorithms, in press. Zbl1112.60087MR2268229
- [4] J. Bricmont, J.L. Lebowitz, C. Maes, Percolation in strongly correlated systems: the massless Gaussian free field, J. Statist. Phys.48 (1987) 1249-1268. Zbl0962.82520MR914444
- [5] E.I. Broman, J.E. Steif, Dynamical stability of percolation for some interacting particle systems and ϵ-stability, Ann. Probab., in press. Zbl1107.82058
- [6] H.O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter, 1988. Zbl0657.60122MR956646
- [7] O. Häggström, Infinite clusters in dependent automorphism invariant percolation on trees, Ann. Probab.25 (1997) 1423-1436. Zbl0895.60098MR1457624
- [8] R.A. Holley, T.M. Liggett, The survival of contact processes, Ann. Probab.6 (1978) 198-206. Zbl0375.60111MR488379
- [9] T.M. Liggett, Interacting Particle Systems, Springer, 1985. Zbl1103.82016MR776231
- [10] T.M. Liggett, Survival and coexistence in interacting particle systems, in: Probability and Phase Transition, Kluwer Academic, 1994, pp. 209-226. Zbl0832.60094MR1283183
- [11] T.M. Liggett, Survival of discrete time growth models, with applications to oriented percolation, Ann. Appl. Probab.5 (1995) 613-636. Zbl0842.60090MR1359822
- [12] T.M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, Springer, 1999. Zbl0949.60006MR1717346
- [13] T.M. Liggett, R.H. Schonmann, A.M. Stacey, Domination by product measures, Ann. Probab.25 (1997) 71-95. Zbl0882.60046MR1428500
- [14] R. Lyons, J.E. Steif, Stationary determinantal processes: phase multiplicity, Bernoullicity, entropy, and domination, Duke Math. J.120 (2003) 515-575. Zbl1068.82010MR2030095
- [15] C. Maes, F. Redig, S. Shlosman, A. van Moffaert, Percolation, path large deviations and weak Gibbsianity, Comm. Math. Phys.209 (2000) 517-545. Zbl0945.60098MR1737993
- [16] R.H. Schonmann, Second order large deviation estimates for ferromagnetic systems in the phase coexistence region, Comm. Math. Phys.112 (1987) 409-422. MR908546
- [17] C.J. Thompson, Mathematical Statistical Mechanics, Princeton University Press, 1972. Zbl0417.60096MR548873
- [18] J.C. Wierman, Substitution method critical probability bounds for the square lattice site percolation model, Combin. Probab. Comput.4 (1995) 181-188. Zbl0835.60089MR1342860
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.