Weak quenched limiting distributions for transient one-dimensional random walk in a random environment
Jonathon Peterson; Gennady Samorodnitsky
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 3, page 722-752
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] S. Alili. Asymptotic behaviour for random walks in random environments. J. Appl. Probab.36 (1999) 334–349. Zbl0946.60046MR1724844
- [2] P. Billingsley. Convergence of Probability Measures, 2nd edition. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York, 1999. Zbl0172.21201MR1700749
- [3] L. Breiman. On some limit theorems similar to the arc-sine law. Theory Probab. Appl.10 (1965) 323–331. Zbl0147.37004MR184274
- [4] R. A. Davis and T. Hsing. Point process and partial sum convergence for weakly dependent random variables with infinite variance. Ann. Probab.23 (1995) 879–917. Zbl0837.60017MR1334176
- [5] D. Dolgopyat and I. Goldsheid. Quenched limit theorems for nearest neighbour random walks in 1d random environment. Preprint, 2010. Available at arXiv:1012.2503v1. Zbl1260.60187MR2966946
- [6] N. Enriquez, C. Sabot and O. Zindy. Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime. Bull. Soc. Math. France137 (2009) 423–452. Zbl1186.60108MR2574090
- [7] N. Enriquez, C. Sabot and O. Zindy. Limit laws for transient random walks in random environment on . Ann. Inst. Fourier (Grenoble) 59 (2009) 2469–2508. Zbl1200.60093MR2640927
- [8] N. Enriquez, C. Sabot, L. Tournier and O. Zindy. Annealed and quenched fluctuations for ballistic random walks in random environment on . Preprint, 2010. Available at arXiv:1012.1959v1. Zbl1279.60126
- [9] N. Gantert and Z. Shi. Many visits to a single site by a transient random walk in random environment. Stochastic Process. Appl.99 (2002) 159–176. Zbl1059.60100MR1901151
- [10] I. Ya. Goldsheid. Simple transient random walks in one-dimensional random environment: The central limit theorem. Probab. Theory Related Fields139 (2007) 41–64. Zbl1134.60065MR2322691
- [11] H. Kesten, M. V. Kozlov and F. Spitzer. A limit law for random walk in a random environment. Compos. Math.30 (1975) 145–168. Zbl0388.60069MR380998
- [12] J. Peterson. Limiting distributions and large deviations for random walks in random environments. Ph.D. thesis, Univ. Minnesota, 2008. Available at arXiv:0810.0257v1. MR2711962
- [13] J. Peterson. Quenched limits for transient, ballistic, sub-Gaussian one-dimensional random walk in random environment. Ann. Inst. Henri Poincaré Probab. Stat.45 (2009) 685–709. Zbl1178.60071MR2548499
- [14] J. Peterson and O. Zeitouni. Quenched limits for transient, zero speed one-dimensional random walk in random environment. Ann. Probab.37 (2009) 143–188. Zbl1179.60070MR2489162
- [15] S. I. Resnick. Extreme Values, Regular Variation and Point Processes. Springer Series in Operations Research and Financial Engineering. Springer, New York, 2008. Zbl1136.60004MR2364939
- [16] G. Samorodnitsky and M. S. Taqqu. Stable Non-Gaussian Random Processes. Chapman & Hall, New York, 1994. Zbl0925.60027
- [17] T. Shiga and H. Tanaka. Infinitely divisible random probability distributions with an application to a random motion in a random environment. Electron. J. Probab. 11 (2006) 1144–1183 (electronic). Zbl1127.60051MR2268541
- [18] F. Solomon. Random walks in a random environment. Ann. Probability3 (1975) 1–31. Zbl0305.60029MR362503
- [19] O. Zeitouni. Random walks in random environment. In Lectures on Probability Theory and Statistics 189–312. Lecture Notes in Math. 1837. Springer, Berlin, 2004. Zbl1060.60103MR2071631