Limit laws for transient random walks in random environment on

Nathanaël Enriquez[1]; Christophe Sabot[2]; Olivier Zindy[3]

  • [1] Université Paris 10 Laboratoire Modal’X 200, avenue de la République 92000 Nanterre (France) Laboratoire de Probabilités et Modèles Aléatoires CNRS– UMR 7599 Université Paris 6 - Paris 7 Boîte Courrier 188 4, place Jussieu 75252 Paris Cedex 05 (France)
  • [2] Université de Lyon Université Lyon 1 INSA de Lyon – École Centrale de Lyon CNRS – UMR 5208 Institut Camille Jordan 43, boulevard du 11 novembre 1918 69622 Villeurbanne Cedex (France)
  • [3] Université Paris 6 Laboratoire de Probabilités et Modèles Aléatoires CNRS – UMR 7599 Boîte Courrier 188 4, place Jussieu 75252 Paris Cedex 05 (France)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 6, page 2469-2508
  • ISSN: 0373-0956

Abstract

top
We consider transient random walks in random environment on with zero asymptotic speed. A classical result of Kesten, Kozlov and Spitzer says that the hitting time of the level n converges in law, after a proper normalization, towards a positive stable law, but they do not obtain a description of its parameter. A different proof of this result is presented, that leads to a complete characterization of this stable law. The case of Dirichlet environment turns out to be remarkably explicit.

How to cite

top

Enriquez, Nathanaël, Sabot, Christophe, and Zindy, Olivier. "Limit laws for transient random walks in random environment on $\mathbb{Z}$." Annales de l’institut Fourier 59.6 (2009): 2469-2508. <http://eudml.org/doc/10461>.

@article{Enriquez2009,
abstract = {We consider transient random walks in random environment on $\mathbb\{Z\}$ with zero asymptotic speed. A classical result of Kesten, Kozlov and Spitzer says that the hitting time of the level $n$ converges in law, after a proper normalization, towards a positive stable law, but they do not obtain a description of its parameter. A different proof of this result is presented, that leads to a complete characterization of this stable law. The case of Dirichlet environment turns out to be remarkably explicit.},
affiliation = {Université Paris 10 Laboratoire Modal’X 200, avenue de la République 92000 Nanterre (France) Laboratoire de Probabilités et Modèles Aléatoires CNRS– UMR 7599 Université Paris 6 - Paris 7 Boîte Courrier 188 4, place Jussieu 75252 Paris Cedex 05 (France); Université de Lyon Université Lyon 1 INSA de Lyon – École Centrale de Lyon CNRS – UMR 5208 Institut Camille Jordan 43, boulevard du 11 novembre 1918 69622 Villeurbanne Cedex (France); Université Paris 6 Laboratoire de Probabilités et Modèles Aléatoires CNRS – UMR 7599 Boîte Courrier 188 4, place Jussieu 75252 Paris Cedex 05 (France)},
author = {Enriquez, Nathanaël, Sabot, Christophe, Zindy, Olivier},
journal = {Annales de l’institut Fourier},
keywords = {Random walks in random environment; stable laws; fluctuations theory for random walks; Beta distributions; random walks in random enviroment; fluctuations theory for random walk; the Dirichlet environment},
language = {eng},
number = {6},
pages = {2469-2508},
publisher = {Association des Annales de l’institut Fourier},
title = {Limit laws for transient random walks in random environment on $\mathbb\{Z\}$},
url = {http://eudml.org/doc/10461},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Enriquez, Nathanaël
AU - Sabot, Christophe
AU - Zindy, Olivier
TI - Limit laws for transient random walks in random environment on $\mathbb{Z}$
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 6
SP - 2469
EP - 2508
AB - We consider transient random walks in random environment on $\mathbb{Z}$ with zero asymptotic speed. A classical result of Kesten, Kozlov and Spitzer says that the hitting time of the level $n$ converges in law, after a proper normalization, towards a positive stable law, but they do not obtain a description of its parameter. A different proof of this result is presented, that leads to a complete characterization of this stable law. The case of Dirichlet environment turns out to be remarkably explicit.
LA - eng
KW - Random walks in random environment; stable laws; fluctuations theory for random walks; Beta distributions; random walks in random enviroment; fluctuations theory for random walk; the Dirichlet environment
UR - http://eudml.org/doc/10461
ER -

References

top
  1. S. Alili, Asymptotic behaviour for random walks in random environments, J. Appl. Probab. 36 (1999), 334-349 Zbl0946.60046MR1724844
  2. S. Alili, Persistent random walks in stationary environment, J. Stat. Phys. 94 (1999), 469-494 Zbl0936.60090MR1675361
  3. G. Ben Arous, J. Černý, Dynamics of trap models, Ecole d’Été de Physique des Houches, Session LXXXIII “Mathematical Statistical Physics” (2006), 331-394, Elsevier Zbl05723801
  4. J.-F. Chamayou, G. Letac, Explicit stationary distributions for compositions of random functions and products of random matrices, J. Theoret. Probab. 4 (1991), 3-36 Zbl0728.60012MR1088391
  5. A. Dembo, O. Zeitouni, Large deviations techniques and applications, 38 (1998), Springer-Verlag, New York Zbl0896.60013MR1619036
  6. N. Enriquez, C. Sabot, O. Zindy, A probabilistic representation of constants in Kesten’s renewal theorem, Probab. Theory Related Fields 144 (2009), 581-613 Zbl1168.60034MR2496443
  7. W. Feller, An introduction to probability theory and its applications. Vol. II., (1971), John Wiley & Sons Inc., New York Zbl0219.60003MR270403
  8. C. M. Goldie, Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab. 1 (1991), 126-166 Zbl0724.60076MR1097468
  9. I. Ya. Goldsheid, Simple transient random walks in one-dimensional random environment: the central limit theorem, Probab. Theory Related Fields 139 (2007), 41-64 Zbl1134.60065MR2322691
  10. A. O. Golosov, Limit distributions for random walks in a random environment, Soviet Math. Dokl. 28 (1986), 18-22 
  11. Y. Hu, Z. Shi, M. Yor, Rates of convergence of diffusions with drifted Brownian potentials, Trans. Amer. Math. Soc. 351 (1999), 3915-3934 Zbl0932.60083MR1637078
  12. D. L. Iglehart, Extreme values in the G I / G / 1 queue, Ann. Math. Statist. 43 (1972), 627-635 Zbl0238.60072MR305498
  13. K. Kawazu, H. Tanaka, A diffusion process in a Brownian environment with drift, J. Math. Soc. Japan 49 (1997), 189-211 Zbl0914.60058MR1601361
  14. H. Kesten, Random difference equations and renewal theory for products of random matrices, Acta Math. 131 (1973), 207-248 Zbl0291.60029MR440724
  15. H. Kesten, The limit distribution of Sinai’s random walk in random environment, Physica A 138 (1986), 299-309 Zbl0666.60065MR865247
  16. H. Kesten, M. V. Kozlov, F. Spitzer, A limit law for random walk in a random environment, Compositio Math. 30 (1975), 145-168 Zbl0388.60069MR380998
  17. E. Mayer-Wolf, A. Roitershtein, O. Zeitouni, Limit theorems for one-dimensional transient random walks in Markov environments, Ann. Inst. H. Poincaré Probab. Statist. 40 (2004), 635-659 Zbl1070.60024MR2086017
  18. J. Peterson, O. Zeitouni, Quenched limits for transient, zero speed one-dimensional random walk in random environment, Ann. Probab. 37 (2009), 143-188 Zbl1179.60070MR2489162
  19. D. Siegmund, Note on a stochastic recursion, State of the art in probability and statistics (Leiden, 1999) (2001), 547-554, Inst. Math. Statist., Beachwood, OH MR1836580
  20. Ya. G. Sinai, The limiting behavior of a one-dimensional random walk in a random medium, Th. Probab. Appl. 27 (1982), 256-268 Zbl0505.60086MR657919
  21. A. Singh, Rates of convergence of a transient diffusion in a spectrally negative Lévy potential, Ann. Probab. 36 (2008), 279-318 Zbl1130.60084MR2370605
  22. F. Solomon, Random walks in a random environment, Ann. Probab. 3 (1975), 1-31 Zbl0305.60029MR362503
  23. O. Zeitouni, Random walks in random environment, Lectures on probability theory and statistics 1837 (2004), 189-312, Springer, Berlin Zbl1060.60103MR2071631

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.