Limit laws for transient random walks in random environment on
Nathanaël Enriquez[1]; Christophe Sabot[2]; Olivier Zindy[3]
- [1] Université Paris 10 Laboratoire Modal’X 200, avenue de la République 92000 Nanterre (France) Laboratoire de Probabilités et Modèles Aléatoires CNRS– UMR 7599 Université Paris 6 - Paris 7 Boîte Courrier 188 4, place Jussieu 75252 Paris Cedex 05 (France)
- [2] Université de Lyon Université Lyon 1 INSA de Lyon – École Centrale de Lyon CNRS – UMR 5208 Institut Camille Jordan 43, boulevard du 11 novembre 1918 69622 Villeurbanne Cedex (France)
- [3] Université Paris 6 Laboratoire de Probabilités et Modèles Aléatoires CNRS – UMR 7599 Boîte Courrier 188 4, place Jussieu 75252 Paris Cedex 05 (France)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 6, page 2469-2508
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topEnriquez, Nathanaël, Sabot, Christophe, and Zindy, Olivier. "Limit laws for transient random walks in random environment on $\mathbb{Z}$." Annales de l’institut Fourier 59.6 (2009): 2469-2508. <http://eudml.org/doc/10461>.
@article{Enriquez2009,
abstract = {We consider transient random walks in random environment on $\mathbb\{Z\}$ with zero asymptotic speed. A classical result of Kesten, Kozlov and Spitzer says that the hitting time of the level $n$ converges in law, after a proper normalization, towards a positive stable law, but they do not obtain a description of its parameter. A different proof of this result is presented, that leads to a complete characterization of this stable law. The case of Dirichlet environment turns out to be remarkably explicit.},
affiliation = {Université Paris 10 Laboratoire Modal’X 200, avenue de la République 92000 Nanterre (France) Laboratoire de Probabilités et Modèles Aléatoires CNRS– UMR 7599 Université Paris 6 - Paris 7 Boîte Courrier 188 4, place Jussieu 75252 Paris Cedex 05 (France); Université de Lyon Université Lyon 1 INSA de Lyon – École Centrale de Lyon CNRS – UMR 5208 Institut Camille Jordan 43, boulevard du 11 novembre 1918 69622 Villeurbanne Cedex (France); Université Paris 6 Laboratoire de Probabilités et Modèles Aléatoires CNRS – UMR 7599 Boîte Courrier 188 4, place Jussieu 75252 Paris Cedex 05 (France)},
author = {Enriquez, Nathanaël, Sabot, Christophe, Zindy, Olivier},
journal = {Annales de l’institut Fourier},
keywords = {Random walks in random environment; stable laws; fluctuations theory for random walks; Beta distributions; random walks in random enviroment; fluctuations theory for random walk; the Dirichlet environment},
language = {eng},
number = {6},
pages = {2469-2508},
publisher = {Association des Annales de l’institut Fourier},
title = {Limit laws for transient random walks in random environment on $\mathbb\{Z\}$},
url = {http://eudml.org/doc/10461},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Enriquez, Nathanaël
AU - Sabot, Christophe
AU - Zindy, Olivier
TI - Limit laws for transient random walks in random environment on $\mathbb{Z}$
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 6
SP - 2469
EP - 2508
AB - We consider transient random walks in random environment on $\mathbb{Z}$ with zero asymptotic speed. A classical result of Kesten, Kozlov and Spitzer says that the hitting time of the level $n$ converges in law, after a proper normalization, towards a positive stable law, but they do not obtain a description of its parameter. A different proof of this result is presented, that leads to a complete characterization of this stable law. The case of Dirichlet environment turns out to be remarkably explicit.
LA - eng
KW - Random walks in random environment; stable laws; fluctuations theory for random walks; Beta distributions; random walks in random enviroment; fluctuations theory for random walk; the Dirichlet environment
UR - http://eudml.org/doc/10461
ER -
References
top- S. Alili, Asymptotic behaviour for random walks in random environments, J. Appl. Probab. 36 (1999), 334-349 Zbl0946.60046MR1724844
- S. Alili, Persistent random walks in stationary environment, J. Stat. Phys. 94 (1999), 469-494 Zbl0936.60090MR1675361
- G. Ben Arous, J. Černý, Dynamics of trap models, Ecole d’Été de Physique des Houches, Session LXXXIII “Mathematical Statistical Physics” (2006), 331-394, Elsevier Zbl05723801
- J.-F. Chamayou, G. Letac, Explicit stationary distributions for compositions of random functions and products of random matrices, J. Theoret. Probab. 4 (1991), 3-36 Zbl0728.60012MR1088391
- A. Dembo, O. Zeitouni, Large deviations techniques and applications, 38 (1998), Springer-Verlag, New York Zbl0896.60013MR1619036
- N. Enriquez, C. Sabot, O. Zindy, A probabilistic representation of constants in Kesten’s renewal theorem, Probab. Theory Related Fields 144 (2009), 581-613 Zbl1168.60034MR2496443
- W. Feller, An introduction to probability theory and its applications. Vol. II., (1971), John Wiley & Sons Inc., New York Zbl0219.60003MR270403
- C. M. Goldie, Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab. 1 (1991), 126-166 Zbl0724.60076MR1097468
- I. Ya. Goldsheid, Simple transient random walks in one-dimensional random environment: the central limit theorem, Probab. Theory Related Fields 139 (2007), 41-64 Zbl1134.60065MR2322691
- A. O. Golosov, Limit distributions for random walks in a random environment, Soviet Math. Dokl. 28 (1986), 18-22
- Y. Hu, Z. Shi, M. Yor, Rates of convergence of diffusions with drifted Brownian potentials, Trans. Amer. Math. Soc. 351 (1999), 3915-3934 Zbl0932.60083MR1637078
- D. L. Iglehart, Extreme values in the queue, Ann. Math. Statist. 43 (1972), 627-635 Zbl0238.60072MR305498
- K. Kawazu, H. Tanaka, A diffusion process in a Brownian environment with drift, J. Math. Soc. Japan 49 (1997), 189-211 Zbl0914.60058MR1601361
- H. Kesten, Random difference equations and renewal theory for products of random matrices, Acta Math. 131 (1973), 207-248 Zbl0291.60029MR440724
- H. Kesten, The limit distribution of Sinai’s random walk in random environment, Physica A 138 (1986), 299-309 Zbl0666.60065MR865247
- H. Kesten, M. V. Kozlov, F. Spitzer, A limit law for random walk in a random environment, Compositio Math. 30 (1975), 145-168 Zbl0388.60069MR380998
- E. Mayer-Wolf, A. Roitershtein, O. Zeitouni, Limit theorems for one-dimensional transient random walks in Markov environments, Ann. Inst. H. Poincaré Probab. Statist. 40 (2004), 635-659 Zbl1070.60024MR2086017
- J. Peterson, O. Zeitouni, Quenched limits for transient, zero speed one-dimensional random walk in random environment, Ann. Probab. 37 (2009), 143-188 Zbl1179.60070MR2489162
- D. Siegmund, Note on a stochastic recursion, State of the art in probability and statistics (Leiden, 1999) (2001), 547-554, Inst. Math. Statist., Beachwood, OH MR1836580
- Ya. G. Sinai, The limiting behavior of a one-dimensional random walk in a random medium, Th. Probab. Appl. 27 (1982), 256-268 Zbl0505.60086MR657919
- A. Singh, Rates of convergence of a transient diffusion in a spectrally negative Lévy potential, Ann. Probab. 36 (2008), 279-318 Zbl1130.60084MR2370605
- F. Solomon, Random walks in a random environment, Ann. Probab. 3 (1975), 1-31 Zbl0305.60029MR362503
- O. Zeitouni, Random walks in random environment, Lectures on probability theory and statistics 1837 (2004), 189-312, Springer, Berlin Zbl1060.60103MR2071631
Citations in EuDML Documents
top- Nathanaël Enriquez, Christophe Sabot, Olivier Zindy, Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime
- Nina Gantert, Jonathon Peterson, Maximal displacement for bridges of random walks in a random environment
- Jonathon Peterson, Gennady Samorodnitsky, Weak quenched limiting distributions for transient one-dimensional random walk in a random environment
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.