Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime

Nathanaël Enriquez; Christophe Sabot; Olivier Zindy

Bulletin de la Société Mathématique de France (2009)

  • Volume: 137, Issue: 3, page 423-452
  • ISSN: 0037-9484

Abstract

top
We consider transient one-dimensional random walks in a random environment with zero asymptotic speed. An aging phenomenon involving the generalized Arcsine law is proved using the localization of the walk at the foot of “valleys“ of height log t . In the quenched setting, we also sharply estimate the distribution of the walk at time t .

How to cite

top

Enriquez, Nathanaël, Sabot, Christophe, and Zindy, Olivier. "Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime." Bulletin de la Société Mathématique de France 137.3 (2009): 423-452. <http://eudml.org/doc/272482>.

@article{Enriquez2009,
abstract = {We consider transient one-dimensional random walks in a random environment with zero asymptotic speed. An aging phenomenon involving the generalized Arcsine law is proved using the localization of the walk at the foot of “valleys“ of height $\log t$. In the quenched setting, we also sharply estimate the distribution of the walk at time $t$.},
author = {Enriquez, Nathanaël, Sabot, Christophe, Zindy, Olivier},
journal = {Bulletin de la Société Mathématique de France},
keywords = {random walks in random environment; aging; quenched localisation},
language = {eng},
number = {3},
pages = {423-452},
publisher = {Société mathématique de France},
title = {Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime},
url = {http://eudml.org/doc/272482},
volume = {137},
year = {2009},
}

TY - JOUR
AU - Enriquez, Nathanaël
AU - Sabot, Christophe
AU - Zindy, Olivier
TI - Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime
JO - Bulletin de la Société Mathématique de France
PY - 2009
PB - Société mathématique de France
VL - 137
IS - 3
SP - 423
EP - 452
AB - We consider transient one-dimensional random walks in a random environment with zero asymptotic speed. An aging phenomenon involving the generalized Arcsine law is proved using the localization of the walk at the foot of “valleys“ of height $\log t$. In the quenched setting, we also sharply estimate the distribution of the walk at time $t$.
LA - eng
KW - random walks in random environment; aging; quenched localisation
UR - http://eudml.org/doc/272482
ER -

References

top
  1. [1] G. Ben Arous, A. Bovier & V. Gayrard – « Glauber dynamics of the random energy model. I. Metastable motion on the extreme states », Comm. Math. Phys.235 (2003), p. 379–425. Zbl1037.82038MR1974509
  2. [2] —, « Glauber dynamics of the random energy model. II. Aging below the critical temperature », Comm. Math. Phys.236 (2003), p. 1–54. Zbl1037.82039MR1977880
  3. [3] G. Ben Arous & J. Černý – « Bouchaud’s model exhibits two different aging regimes in dimension one », Ann. Appl. Probab.15 (2005), p. 1161–1192. Zbl1069.60092MR2134101
  4. [4] —, « Dynamics of trap models », in Ecole d’Éte de Physique des Houches, Session LXXXIII “Mathematical Statistical Physics”, Elsevier, 2006, p. 331–394. Zbl05723801MR2581889
  5. [5] —, « Scaling limit for trap models on d », Ann. Probab.35 (2007), p. 2356–2384. Zbl1134.60064MR2353391
  6. [6] —, « The arcsine law as a universal aging scheme for trap models », Comm. Pure Appl. Math.61 (2008), p. 289–329. Zbl1141.60075MR2376843
  7. [7] G. Ben Arous, J. Černý & T. Mountford – « Aging in two-dimensional Bouchaud’s model », Probab. Theory Related Fields134 (2006), p. 1–43. Zbl1089.82017MR2221784
  8. [8] J.-P. Bouchaud – « Weak ergodicity breaking and aging in disordered systems », J. Phys. I (France) 2 (1992), p. 1705–1713. 
  9. [9] J.-P. Bouchaud, L. Cugliandolo, J. Kurchan & M. Mézard – « Out of equilibrium dynamics in spin-glasses and other glassy systems », in Spin-glasses and Random Fields, World Scientific, 1998, p. 161–224. 
  10. [10] J.-P. Bouchaud & D. S. Dean – « Aging on Parisi’s tree », J. Phys. I (France) 5 (1995), p. 265–286. 
  11. [11] S. Cocco & R. Monasson – « Reconstructing a random potential from its random walks », Europhys. Lett. EPL 81 (2008), Art. 20002. MR2443950
  12. [12] A. Dembo, A. Guionnet & O. Zeitouni – « Aging properties of Sinai’s model of random walk in random environment », in St. Flour summer school 2001 lecture notes by O. Zeitouni, 2004, arXiv:math/0105215. 
  13. [13] N. Enriquez, C. Sabot & O. Zindy – « Limit laws for transient random walks in random environment on », Annales de l’Institut Fourier59 (2009), p. 2469–2508. Zbl1200.60093MR2640927
  14. [14] —, « A probabilistic representation of constants in Kesten’s renewal theorem », Probab. Theory Related Fields144 (2009), p. 581–613. Zbl1168.60034MR2496443
  15. [15] W. Feller – An introduction to probability theory and its applications. Vol. II., Second edition, John Wiley & Sons Inc., 1971. Zbl0138.10207MR270403
  16. [16] L. R. G. Fontes, M. Isopi & C. M. Newman – « Random walks with strongly inhomogeneous rates and singular diffusions: convergence, localization and aging in one dimension », Ann. Probab.30 (2002), p. 579–604. Zbl1015.60099MR1905852
  17. [17] A. O. Golosov – « Localization of random walks in one-dimensional random environments », Comm. Math. Phys.92 (1984), p. 491–506. Zbl0534.60065MR736407
  18. [18] —, « Limit distributions for random walks in random environments », Soviet Math. Dokl.28 (1986), p. 18–22. 
  19. [19] F. d. Hollander – Large deviations, Fields Institute Monographs, vol. 14, Amer. Math. Soc., 2000. Zbl0949.60001MR1739680
  20. [20] D. L. Iglehart – « Extreme values in the G I / G / 1 queue », Ann. Math. Statist.43 (1972), p. 627–635. Zbl0238.60072MR305498
  21. [21] H. Kesten – « The limit distribution of Sinaĭ’s random walk in random environment », Phys. A138 (1986), p. 299–309. Zbl0666.60065MR865247
  22. [22] H. Kesten, M. V. Kozlov & F. Spitzer – « A limit law for random walk in a random environment », Compositio Math.30 (1975), p. 145–168. Zbl0388.60069MR380998
  23. [23] P. Le Doussal, C. Monthus & D. S. Fisher – « Random walkers in one-dimensional random environments: exact renormalization group analysis », Phys. Rev. E59 (1999), p. 4795–4840. MR1682204
  24. [24] J. Peterson & O. Zeitouni – « Quenched limits for transient, zero speed one-dimensional random walk in random environment », Ann. Probab.37 (2009), p. 143–188. Zbl1179.60070MR2489162
  25. [25] Y. G. Sinaĭ – « The limit behavior of a one-dimensional random walk in a random environment », Teor. Veroyatnost. i Primenen.27 (1982), p. 247–258. Zbl0497.60065MR657919
  26. [26] F. Solomon – « Random walks in a random environment », Ann. Probab.3 (1975), p. 1–31. Zbl0305.60029MR362503
  27. [27] O. Zeitouni – « Random walks in random environment », in Lectures on probability theory and statistics, Lecture Notes in Math., vol. 1837, Springer, 2004, p. 189–312. Zbl1060.60103MR2071631

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.