Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime
Nathanaël Enriquez; Christophe Sabot; Olivier Zindy
Bulletin de la Société Mathématique de France (2009)
- Volume: 137, Issue: 3, page 423-452
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topEnriquez, Nathanaël, Sabot, Christophe, and Zindy, Olivier. "Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime." Bulletin de la Société Mathématique de France 137.3 (2009): 423-452. <http://eudml.org/doc/272482>.
@article{Enriquez2009,
abstract = {We consider transient one-dimensional random walks in a random environment with zero asymptotic speed. An aging phenomenon involving the generalized Arcsine law is proved using the localization of the walk at the foot of “valleys“ of height $\log t$. In the quenched setting, we also sharply estimate the distribution of the walk at time $t$.},
author = {Enriquez, Nathanaël, Sabot, Christophe, Zindy, Olivier},
journal = {Bulletin de la Société Mathématique de France},
keywords = {random walks in random environment; aging; quenched localisation},
language = {eng},
number = {3},
pages = {423-452},
publisher = {Société mathématique de France},
title = {Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime},
url = {http://eudml.org/doc/272482},
volume = {137},
year = {2009},
}
TY - JOUR
AU - Enriquez, Nathanaël
AU - Sabot, Christophe
AU - Zindy, Olivier
TI - Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime
JO - Bulletin de la Société Mathématique de France
PY - 2009
PB - Société mathématique de France
VL - 137
IS - 3
SP - 423
EP - 452
AB - We consider transient one-dimensional random walks in a random environment with zero asymptotic speed. An aging phenomenon involving the generalized Arcsine law is proved using the localization of the walk at the foot of “valleys“ of height $\log t$. In the quenched setting, we also sharply estimate the distribution of the walk at time $t$.
LA - eng
KW - random walks in random environment; aging; quenched localisation
UR - http://eudml.org/doc/272482
ER -
References
top- [1] G. Ben Arous, A. Bovier & V. Gayrard – « Glauber dynamics of the random energy model. I. Metastable motion on the extreme states », Comm. Math. Phys.235 (2003), p. 379–425. Zbl1037.82038MR1974509
- [2] —, « Glauber dynamics of the random energy model. II. Aging below the critical temperature », Comm. Math. Phys.236 (2003), p. 1–54. Zbl1037.82039MR1977880
- [3] G. Ben Arous & J. Černý – « Bouchaud’s model exhibits two different aging regimes in dimension one », Ann. Appl. Probab.15 (2005), p. 1161–1192. Zbl1069.60092MR2134101
- [4] —, « Dynamics of trap models », in Ecole d’Éte de Physique des Houches, Session LXXXIII “Mathematical Statistical Physics”, Elsevier, 2006, p. 331–394. Zbl05723801MR2581889
- [5] —, « Scaling limit for trap models on », Ann. Probab.35 (2007), p. 2356–2384. Zbl1134.60064MR2353391
- [6] —, « The arcsine law as a universal aging scheme for trap models », Comm. Pure Appl. Math.61 (2008), p. 289–329. Zbl1141.60075MR2376843
- [7] G. Ben Arous, J. Černý & T. Mountford – « Aging in two-dimensional Bouchaud’s model », Probab. Theory Related Fields134 (2006), p. 1–43. Zbl1089.82017MR2221784
- [8] J.-P. Bouchaud – « Weak ergodicity breaking and aging in disordered systems », J. Phys. I (France) 2 (1992), p. 1705–1713.
- [9] J.-P. Bouchaud, L. Cugliandolo, J. Kurchan & M. Mézard – « Out of equilibrium dynamics in spin-glasses and other glassy systems », in Spin-glasses and Random Fields, World Scientific, 1998, p. 161–224.
- [10] J.-P. Bouchaud & D. S. Dean – « Aging on Parisi’s tree », J. Phys. I (France) 5 (1995), p. 265–286.
- [11] S. Cocco & R. Monasson – « Reconstructing a random potential from its random walks », Europhys. Lett. EPL 81 (2008), Art. 20002. MR2443950
- [12] A. Dembo, A. Guionnet & O. Zeitouni – « Aging properties of Sinai’s model of random walk in random environment », in St. Flour summer school 2001 lecture notes by O. Zeitouni, 2004, arXiv:math/0105215.
- [13] N. Enriquez, C. Sabot & O. Zindy – « Limit laws for transient random walks in random environment on », Annales de l’Institut Fourier59 (2009), p. 2469–2508. Zbl1200.60093MR2640927
- [14] —, « A probabilistic representation of constants in Kesten’s renewal theorem », Probab. Theory Related Fields144 (2009), p. 581–613. Zbl1168.60034MR2496443
- [15] W. Feller – An introduction to probability theory and its applications. Vol. II., Second edition, John Wiley & Sons Inc., 1971. Zbl0138.10207MR270403
- [16] L. R. G. Fontes, M. Isopi & C. M. Newman – « Random walks with strongly inhomogeneous rates and singular diffusions: convergence, localization and aging in one dimension », Ann. Probab.30 (2002), p. 579–604. Zbl1015.60099MR1905852
- [17] A. O. Golosov – « Localization of random walks in one-dimensional random environments », Comm. Math. Phys.92 (1984), p. 491–506. Zbl0534.60065MR736407
- [18] —, « Limit distributions for random walks in random environments », Soviet Math. Dokl.28 (1986), p. 18–22.
- [19] F. d. Hollander – Large deviations, Fields Institute Monographs, vol. 14, Amer. Math. Soc., 2000. Zbl0949.60001MR1739680
- [20] D. L. Iglehart – « Extreme values in the queue », Ann. Math. Statist.43 (1972), p. 627–635. Zbl0238.60072MR305498
- [21] H. Kesten – « The limit distribution of Sinaĭ’s random walk in random environment », Phys. A138 (1986), p. 299–309. Zbl0666.60065MR865247
- [22] H. Kesten, M. V. Kozlov & F. Spitzer – « A limit law for random walk in a random environment », Compositio Math.30 (1975), p. 145–168. Zbl0388.60069MR380998
- [23] P. Le Doussal, C. Monthus & D. S. Fisher – « Random walkers in one-dimensional random environments: exact renormalization group analysis », Phys. Rev. E59 (1999), p. 4795–4840. MR1682204
- [24] J. Peterson & O. Zeitouni – « Quenched limits for transient, zero speed one-dimensional random walk in random environment », Ann. Probab.37 (2009), p. 143–188. Zbl1179.60070MR2489162
- [25] Y. G. Sinaĭ – « The limit behavior of a one-dimensional random walk in a random environment », Teor. Veroyatnost. i Primenen.27 (1982), p. 247–258. Zbl0497.60065MR657919
- [26] F. Solomon – « Random walks in a random environment », Ann. Probab.3 (1975), p. 1–31. Zbl0305.60029MR362503
- [27] O. Zeitouni – « Random walks in random environment », in Lectures on probability theory and statistics, Lecture Notes in Math., vol. 1837, Springer, 2004, p. 189–312. Zbl1060.60103MR2071631
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.