On smoothing properties of transition semigroups associated to a class of SDEs with jumps

Seiichiro Kusuoka; Carlo Marinelli

Annales de l'I.H.P. Probabilités et statistiques (2014)

  • Volume: 50, Issue: 4, page 1347-1370
  • ISSN: 0246-0203

Abstract

top
We prove smoothing properties of nonlocal transition semigroups associated to a class of stochastic differential equations (SDE) in d driven by additive pure-jump Lévy noise. In particular, we assume that the Lévy process driving the SDE is the sum of a subordinated Wiener process Y (i.e. Y = W T , where T is an increasing pure-jump Lévy process starting at zero and independent of the Wiener process W ) and of an arbitrary Lévy process independent of Y , that the drift coefficient is continuous (but not necessarily Lipschitz continuous) and grows not faster than a polynomial, and that the SDE admits a Feller weak solution. By a combination of probabilistic and analytic methods, we provide sufficient conditions for the Markovian semigroup associated to the SDE to be strong Feller and to map L p ( d ) to continuous bounded functions. A key intermediate step is the study of regularizing properties of the transition semigroup associated to Y in terms of negative moments of the subordinator T .

How to cite

top

Kusuoka, Seiichiro, and Marinelli, Carlo. "On smoothing properties of transition semigroups associated to a class of SDEs with jumps." Annales de l'I.H.P. Probabilités et statistiques 50.4 (2014): 1347-1370. <http://eudml.org/doc/272097>.

@article{Kusuoka2014,
abstract = {We prove smoothing properties of nonlocal transition semigroups associated to a class of stochastic differential equations (SDE) in $\mathbb \{R\} ^\{d\}$ driven by additive pure-jump Lévy noise. In particular, we assume that the Lévy process driving the SDE is the sum of a subordinated Wiener process $Y$ (i.e. $Y=W\circ T$, where $T$ is an increasing pure-jump Lévy process starting at zero and independent of the Wiener process $W$) and of an arbitrary Lévy process independent of $Y$, that the drift coefficient is continuous (but not necessarily Lipschitz continuous) and grows not faster than a polynomial, and that the SDE admits a Feller weak solution. By a combination of probabilistic and analytic methods, we provide sufficient conditions for the Markovian semigroup associated to the SDE to be strong Feller and to map $L_\{p\}(\mathbb \{R\} ^\{d\})$ to continuous bounded functions. A key intermediate step is the study of regularizing properties of the transition semigroup associated to $Y$ in terms of negative moments of the subordinator $T$.},
author = {Kusuoka, Seiichiro, Marinelli, Carlo},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Lévy processes; subordination; transition semigroups; non-local operators; Malliavin calculus; stochastic differential equations; pure-jump Lévy processes},
language = {eng},
number = {4},
pages = {1347-1370},
publisher = {Gauthier-Villars},
title = {On smoothing properties of transition semigroups associated to a class of SDEs with jumps},
url = {http://eudml.org/doc/272097},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Kusuoka, Seiichiro
AU - Marinelli, Carlo
TI - On smoothing properties of transition semigroups associated to a class of SDEs with jumps
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 4
SP - 1347
EP - 1370
AB - We prove smoothing properties of nonlocal transition semigroups associated to a class of stochastic differential equations (SDE) in $\mathbb {R} ^{d}$ driven by additive pure-jump Lévy noise. In particular, we assume that the Lévy process driving the SDE is the sum of a subordinated Wiener process $Y$ (i.e. $Y=W\circ T$, where $T$ is an increasing pure-jump Lévy process starting at zero and independent of the Wiener process $W$) and of an arbitrary Lévy process independent of $Y$, that the drift coefficient is continuous (but not necessarily Lipschitz continuous) and grows not faster than a polynomial, and that the SDE admits a Feller weak solution. By a combination of probabilistic and analytic methods, we provide sufficient conditions for the Markovian semigroup associated to the SDE to be strong Feller and to map $L_{p}(\mathbb {R} ^{d})$ to continuous bounded functions. A key intermediate step is the study of regularizing properties of the transition semigroup associated to $Y$ in terms of negative moments of the subordinator $T$.
LA - eng
KW - Lévy processes; subordination; transition semigroups; non-local operators; Malliavin calculus; stochastic differential equations; pure-jump Lévy processes
UR - http://eudml.org/doc/272097
ER -

References

top
  1. [1] V. Bally and E. Clément. Integration by parts formula and applications to equations with jumps. Probab. Theory Related Fields 151 (3–4) (2011) 6133–657. Zbl1243.60045MR2851695
  2. [2] J. Bertoin. Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. Zbl0938.60005MR1406564
  3. [3] J.-M. Bismut. Calcul des variations stochastique et processus de sauts. Z. Wahrsch. Verw. Gebiete 63 (2) (1983) 147–235. Zbl0494.60082MR701527
  4. [4] V. I. Bogachev. Gaussian Measures. Mathematical Surveys and Monographs 62. American Mathematical Society, Providence, RI, 1998. Zbl0913.60035MR1642391
  5. [5] K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song and Z. Vondraček. Potential Analysis of Stable Processes and Its Extensions. Lecture Notes in Mathematics 1980. Springer, Berlin, 2009. MR2569321
  6. [6] B. Brainerd and R. E. Edwards. Linear operators which commute with translations. I. Representation theorems. J. Austral. Math. Soc. 6 (1966) 289–327. Zbl0154.39202MR206725
  7. [7] L. Caffarelli, C. H. Chan and A. Vasseur. Regularity theory for parabolic nonlinear integral operators. J. Amer. Math. Soc. 24 (3) (2011) 849–869. Zbl1223.35098MR2784330
  8. [8] M. Gordina, M. Röckner and F.-Y. Wang. Dimension-independent Harnack inequalities for subordinated semigroups. Potential Anal. 34 (3) (2011) 293–307. Zbl1219.43006MR2782975
  9. [9] I. Gyöngy and N. V. Krylov. On stochastic equations with respect to semimartingales. I. Stochastics 4 (1) (1980/81) 1–21. Zbl0439.60061MR587426
  10. [10] P. Hartman and A. Wintner. On the infinitesimal generators of integral convolutions. Amer. J. Math.64 (1942) 273–298. Zbl0063.01951MR6635
  11. [11] J. Hawkes. Potential theory of Lévy processes. Proc. London Math. Soc. (3) 38 (2) (1979) 335–352. Zbl0401.60069MR531166
  12. [12] Y. Ishikawa and H. Kunita. Malliavin calculus on the Wiener–Poisson space and its application to canonical SDE with jumps. Stochastic Process. Appl. 116 (12) (2006) 1743–1769. Zbl1107.60028MR2307057
  13. [13] J. Jacod. Une condition d’existence et d’unicité pour les solutions fortes d’équations différentielles stochastiques. Stochastics 4 (1) (1980/81) 23–38. Zbl0436.60044MR587427
  14. [14] V. Knopova and R. Schilling. A note on the existence of transition probability densities of Lévy processes. Forum Math. 25 125–149. Zbl1269.60050MR3010850
  15. [15] H. Kunita. Smooth density of canonical stochastic differential equation with jumps. Astérisque327 (2009) 69–91. Zbl1206.60056MR2642353
  16. [16] S. Kusuoka and D. Stroock. Applications of the Malliavin calculus. II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 (1) (1985) 1–76. Zbl0568.60059MR783181
  17. [17] S. Kusuoka. Malliavin calculus for stochastic differential equations driven by subordinated Brownian motions. Kyoto J. Math. 50 (3) (2010) 491–520. Zbl1206.60052MR2723861
  18. [18] R. Léandre. Calcul des variations sur un Brownien subordonné. In Séminaire de Probabilités, XXII 414–433. Lecture Notes in Math. 1321. Springer, Berlin, 1988. Zbl0663.60062MR960537
  19. [19] J.-P. Lepeltier and B. Marchal. Problème des martingales et équations différentielles stochastiques associées à un opérateur intégro-différentiel. Ann. Inst. H. Poincaré Sect. B (N.S.) 12 (1) (1976) 43–103. Zbl0345.60029MR413288
  20. [20] C. Marinelli, C. Prévôt and M. Röckner. Regular dependence on initial data for stochastic evolution equations with multiplicative Poisson noise. J. Funct. Anal. 258 (2) (2010) 616–649. Zbl1186.60060MR2557949
  21. [21] C. Marinelli and M. Röckner. Well-posedness and asymptotic behavior for stochastic reaction-diffusion equations with multiplicative Poisson noise. Electron. J. Probab. 15 (49) (2010) 1528–1555. Zbl1225.60108MR2727320
  22. [22] M. Métivier. Semimartingales. de Gruyter, Berlin, 1982. Zbl0503.60054MR688144
  23. [23] R. Mikulevičius and H. Pragarauskas. On the Cauchy problem for certain integro-differential operators in Sobolev and Hölder spaces. Liet. Mat. Rink. 32 (2) (1992) 299–331. Zbl0795.45007
  24. [24] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York, 1983. Zbl0516.47023MR710486
  25. [25] E. Priola and J. Zabczyk. Liouville theorems for non-local operators. J. Funct. Anal. 216 (2) (2004) 455–490. Zbl1063.31003MR2095690
  26. [26] E. Priola and J. Zabczyk. Structural properties of semilinear SPDEs driven by cylindrical stable processes. Probab. Theory Related Fields 149 (2011) (1–2), 97–137. Zbl1231.60061MR2773026
  27. [27] G. Samorodnitsky and M. S. Taqqu. Stable Non-Gaussian Random Processes. Chapman & Hall, New York, 1994. Zbl0925.60027MR1280932
  28. [28] R. L. Schilling and J. Wang. Strong Feller continuity of Feller processes and semigroups. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 15 (2) (2012) 1250010. Zbl1258.60047MR2957137
  29. [29] H. Triebel. Theory of Function Spaces. Birkhäuser, Basel, 1983. Zbl1235.46002MR781540

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.