On smoothing properties of transition semigroups associated to a class of SDEs with jumps
Seiichiro Kusuoka; Carlo Marinelli
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 4, page 1347-1370
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topKusuoka, Seiichiro, and Marinelli, Carlo. "On smoothing properties of transition semigroups associated to a class of SDEs with jumps." Annales de l'I.H.P. Probabilités et statistiques 50.4 (2014): 1347-1370. <http://eudml.org/doc/272097>.
@article{Kusuoka2014,
abstract = {We prove smoothing properties of nonlocal transition semigroups associated to a class of stochastic differential equations (SDE) in $\mathbb \{R\} ^\{d\}$ driven by additive pure-jump Lévy noise. In particular, we assume that the Lévy process driving the SDE is the sum of a subordinated Wiener process $Y$ (i.e. $Y=W\circ T$, where $T$ is an increasing pure-jump Lévy process starting at zero and independent of the Wiener process $W$) and of an arbitrary Lévy process independent of $Y$, that the drift coefficient is continuous (but not necessarily Lipschitz continuous) and grows not faster than a polynomial, and that the SDE admits a Feller weak solution. By a combination of probabilistic and analytic methods, we provide sufficient conditions for the Markovian semigroup associated to the SDE to be strong Feller and to map $L_\{p\}(\mathbb \{R\} ^\{d\})$ to continuous bounded functions. A key intermediate step is the study of regularizing properties of the transition semigroup associated to $Y$ in terms of negative moments of the subordinator $T$.},
author = {Kusuoka, Seiichiro, Marinelli, Carlo},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Lévy processes; subordination; transition semigroups; non-local operators; Malliavin calculus; stochastic differential equations; pure-jump Lévy processes},
language = {eng},
number = {4},
pages = {1347-1370},
publisher = {Gauthier-Villars},
title = {On smoothing properties of transition semigroups associated to a class of SDEs with jumps},
url = {http://eudml.org/doc/272097},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Kusuoka, Seiichiro
AU - Marinelli, Carlo
TI - On smoothing properties of transition semigroups associated to a class of SDEs with jumps
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 4
SP - 1347
EP - 1370
AB - We prove smoothing properties of nonlocal transition semigroups associated to a class of stochastic differential equations (SDE) in $\mathbb {R} ^{d}$ driven by additive pure-jump Lévy noise. In particular, we assume that the Lévy process driving the SDE is the sum of a subordinated Wiener process $Y$ (i.e. $Y=W\circ T$, where $T$ is an increasing pure-jump Lévy process starting at zero and independent of the Wiener process $W$) and of an arbitrary Lévy process independent of $Y$, that the drift coefficient is continuous (but not necessarily Lipschitz continuous) and grows not faster than a polynomial, and that the SDE admits a Feller weak solution. By a combination of probabilistic and analytic methods, we provide sufficient conditions for the Markovian semigroup associated to the SDE to be strong Feller and to map $L_{p}(\mathbb {R} ^{d})$ to continuous bounded functions. A key intermediate step is the study of regularizing properties of the transition semigroup associated to $Y$ in terms of negative moments of the subordinator $T$.
LA - eng
KW - Lévy processes; subordination; transition semigroups; non-local operators; Malliavin calculus; stochastic differential equations; pure-jump Lévy processes
UR - http://eudml.org/doc/272097
ER -
References
top- [1] V. Bally and E. Clément. Integration by parts formula and applications to equations with jumps. Probab. Theory Related Fields 151 (3–4) (2011) 6133–657. Zbl1243.60045MR2851695
- [2] J. Bertoin. Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. Zbl0938.60005MR1406564
- [3] J.-M. Bismut. Calcul des variations stochastique et processus de sauts. Z. Wahrsch. Verw. Gebiete 63 (2) (1983) 147–235. Zbl0494.60082MR701527
- [4] V. I. Bogachev. Gaussian Measures. Mathematical Surveys and Monographs 62. American Mathematical Society, Providence, RI, 1998. Zbl0913.60035MR1642391
- [5] K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song and Z. Vondraček. Potential Analysis of Stable Processes and Its Extensions. Lecture Notes in Mathematics 1980. Springer, Berlin, 2009. MR2569321
- [6] B. Brainerd and R. E. Edwards. Linear operators which commute with translations. I. Representation theorems. J. Austral. Math. Soc. 6 (1966) 289–327. Zbl0154.39202MR206725
- [7] L. Caffarelli, C. H. Chan and A. Vasseur. Regularity theory for parabolic nonlinear integral operators. J. Amer. Math. Soc. 24 (3) (2011) 849–869. Zbl1223.35098MR2784330
- [8] M. Gordina, M. Röckner and F.-Y. Wang. Dimension-independent Harnack inequalities for subordinated semigroups. Potential Anal. 34 (3) (2011) 293–307. Zbl1219.43006MR2782975
- [9] I. Gyöngy and N. V. Krylov. On stochastic equations with respect to semimartingales. I. Stochastics 4 (1) (1980/81) 1–21. Zbl0439.60061MR587426
- [10] P. Hartman and A. Wintner. On the infinitesimal generators of integral convolutions. Amer. J. Math.64 (1942) 273–298. Zbl0063.01951MR6635
- [11] J. Hawkes. Potential theory of Lévy processes. Proc. London Math. Soc. (3) 38 (2) (1979) 335–352. Zbl0401.60069MR531166
- [12] Y. Ishikawa and H. Kunita. Malliavin calculus on the Wiener–Poisson space and its application to canonical SDE with jumps. Stochastic Process. Appl. 116 (12) (2006) 1743–1769. Zbl1107.60028MR2307057
- [13] J. Jacod. Une condition d’existence et d’unicité pour les solutions fortes d’équations différentielles stochastiques. Stochastics 4 (1) (1980/81) 23–38. Zbl0436.60044MR587427
- [14] V. Knopova and R. Schilling. A note on the existence of transition probability densities of Lévy processes. Forum Math. 25 125–149. Zbl1269.60050MR3010850
- [15] H. Kunita. Smooth density of canonical stochastic differential equation with jumps. Astérisque327 (2009) 69–91. Zbl1206.60056MR2642353
- [16] S. Kusuoka and D. Stroock. Applications of the Malliavin calculus. II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 (1) (1985) 1–76. Zbl0568.60059MR783181
- [17] S. Kusuoka. Malliavin calculus for stochastic differential equations driven by subordinated Brownian motions. Kyoto J. Math. 50 (3) (2010) 491–520. Zbl1206.60052MR2723861
- [18] R. Léandre. Calcul des variations sur un Brownien subordonné. In Séminaire de Probabilités, XXII 414–433. Lecture Notes in Math. 1321. Springer, Berlin, 1988. Zbl0663.60062MR960537
- [19] J.-P. Lepeltier and B. Marchal. Problème des martingales et équations différentielles stochastiques associées à un opérateur intégro-différentiel. Ann. Inst. H. Poincaré Sect. B (N.S.) 12 (1) (1976) 43–103. Zbl0345.60029MR413288
- [20] C. Marinelli, C. Prévôt and M. Röckner. Regular dependence on initial data for stochastic evolution equations with multiplicative Poisson noise. J. Funct. Anal. 258 (2) (2010) 616–649. Zbl1186.60060MR2557949
- [21] C. Marinelli and M. Röckner. Well-posedness and asymptotic behavior for stochastic reaction-diffusion equations with multiplicative Poisson noise. Electron. J. Probab. 15 (49) (2010) 1528–1555. Zbl1225.60108MR2727320
- [22] M. Métivier. Semimartingales. de Gruyter, Berlin, 1982. Zbl0503.60054MR688144
- [23] R. Mikulevičius and H. Pragarauskas. On the Cauchy problem for certain integro-differential operators in Sobolev and Hölder spaces. Liet. Mat. Rink. 32 (2) (1992) 299–331. Zbl0795.45007
- [24] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York, 1983. Zbl0516.47023MR710486
- [25] E. Priola and J. Zabczyk. Liouville theorems for non-local operators. J. Funct. Anal. 216 (2) (2004) 455–490. Zbl1063.31003MR2095690
- [26] E. Priola and J. Zabczyk. Structural properties of semilinear SPDEs driven by cylindrical stable processes. Probab. Theory Related Fields 149 (2011) (1–2), 97–137. Zbl1231.60061MR2773026
- [27] G. Samorodnitsky and M. S. Taqqu. Stable Non-Gaussian Random Processes. Chapman & Hall, New York, 1994. Zbl0925.60027MR1280932
- [28] R. L. Schilling and J. Wang. Strong Feller continuity of Feller processes and semigroups. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 15 (2) (2012) 1250010. Zbl1258.60047MR2957137
- [29] H. Triebel. Theory of Function Spaces. Birkhäuser, Basel, 1983. Zbl1235.46002MR781540
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.