Displaying similar documents to “On smoothing properties of transition semigroups associated to a class of SDEs with jumps”

Semigroups generated by convex combinations of several Feller generators in models of mathematical biology

Adam Bobrowski, Radosław Bogucki (2008)

Studia Mathematica

Similarity:

Let be a locally compact Hausdorff space. Let A i , i = 0,1,...,N, be generators of Feller semigroups in C₀() with related Feller processes X i = X i ( t ) , t 0 and let α i , i = 0,...,N, be non-negative continuous functions on with i = 0 N α i = 1 . Assume that the closure A of k = 0 N α k A k defined on i = 0 N ( A i ) generates a Feller semigroup T(t), t ≥ 0 in C₀(). A natural interpretation of a related Feller process X = X(t), t ≥ 0 is that it evolves according to the following heuristic rules: conditional on being at a point p ∈ , with probability...

Lévy processes conditioned on having a large height process

Mathieu Richard (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

In the present work, we consider spectrally positive Lévy processes ( X t , t 0 ) not drifting to + and we are interested in conditioning these processes to reach arbitrarily large heights (in the sense of the height process associated with X ) before hitting 0 . This way we obtain a new conditioning of Lévy processes to stay positive. The (honest) law x of this conditioned process (starting at x g t ; 0 ) is defined as a Doob h -transform via a martingale. For Lévy processes with infinite variation paths,...

On pathwise uniqueness for stochastic differential equations driven by stable Lévy processes

Nicolas Fournier (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We study a one-dimensional stochastic differential equation driven by a stable Lévy process of order α with drift and diffusion coefficients b , σ . When α ( 1 , 2 ) , we investigate pathwise uniqueness for this equation. When α ( 0 , 1 ) , we study another stochastic differential equation, which is equivalent in law, but for which pathwise uniqueness holds under much weaker conditions. We obtain various results, depending on whether α ( 0 , 1 ) or α ( 1 , 2 ) and on whether the driving stable process is symmetric or not. Our...

Covariance structure of wide-sense Markov processes of order k ≥ 1

Arkadiusz Kasprzyk, Władysław Szczotka (2006)

Applicationes Mathematicae

Similarity:

A notion of a wide-sense Markov process X t of order k ≥ 1, X t W M ( k ) , is introduced as a direct generalization of Doob’s notion of wide-sense Markov process (of order k=1 in our terminology). A base for investigation of the covariance structure of X t is the k-dimensional process x t = ( X t - k + 1 , . . . , X t ) . The covariance structure of X t W M ( k ) is considered in the general case and in the periodic case. In the general case it is shown that X t W M ( k ) iff x t is a k-dimensional WM(1) process and iff the covariance function of x t has the triangular...

A continuous mapping theorem for the argmin-set functional with applications to convex stochastic processes

Dietmar Ferger (2021)

Kybernetika

Similarity:

For lower-semicontinuous and convex stochastic processes Z n and nonnegative random variables ϵ n we investigate the pertaining random sets A ( Z n , ϵ n ) of all ϵ n -approximating minimizers of Z n . It is shown that, if the finite dimensional distributions of the Z n converge to some Z and if the ϵ n converge in probability to some constant c , then the A ( Z n , ϵ n ) converge in distribution to A ( Z , c ) in the hyperspace of Vietoris. As a simple corollary we obtain an extension of several argmin-theorems in the literature. In particular,...

Spectral condition, hitting times and Nash inequality

Eva Löcherbach, Oleg Loukianov, Dasha Loukianova (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Let X be a μ -symmetric Hunt process on a LCCB space 𝙴 . For an open set 𝙶 𝙴 , let τ 𝙶 be the exit time of X from 𝙶 and A 𝙶 be the generator of the process killed when it leaves 𝙶 . Let r : [ 0 , [ [ 0 , [ and R ( t ) = 0 t r ( s ) d s . We give necessary and sufficient conditions for 𝔼 μ R ( τ 𝙶 ) l t ; in terms of the behavior near the origin of the spectral measure of - A 𝙶 . When r ( t ) = t l , l 0 , by means of this condition we derive the Nash inequality for the killed process. In the diffusion case this permits to show that the existence of moments of order l + 1 for τ 𝙶 ...

The weak convergence of regenerative processes using some excursion path decompositions

Amaury Lambert, Florian Simatos (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider regenerative processes with values in some general Polish space. We define their ε -big excursions as excursions e such that ϕ ( e ) g t ; ε , where ϕ is some given functional on the space of excursions which can be thought of as, e.g., the length or the height of e . We establish a general condition that guarantees the convergence of a sequence of regenerative processes involving the convergence of ε -big excursions and of their endpoints, for all ε in a set whose closure contains 0 . Finally,...

Weak convergence of mutually independent X B and X A under weak convergence of X X B - X A

W. Szczotka (2006)

Applicationes Mathematicae

Similarity:

For each n ≥ 1, let v n , k , k 1 and u n , k , k 1 be mutually independent sequences of nonnegative random variables and let each of them consist of mutually independent and identically distributed random variables with means v̅ₙ and u̅̅ₙ, respectively. Let X B ( t ) = ( 1 / c ) j = 1 [ n t ] ( v n , j - v ̅ ) , X A ( t ) = ( 1 / c ) j = 1 [ n t ] ( u n , j - u ̅ ̅ ) , t ≥ 0, and X = X B - X A . The main result gives conditions under which the weak convergence X X , where X is a Lévy process, implies X B X B and X A X A , where X B and X A are mutually independent Lévy processes and X = X B - X A .

On reliability analysis of consecutive k -out-of- n systems with arbitrarily dependent components

Ebrahim Salehi (2016)

Applications of Mathematics

Similarity:

In this paper, we consider the linear and circular consecutive k -out-of- n systems consisting of arbitrarily dependent components. Under the condition that at least n - r + 1 components ( r n ) of the system are working at time t , we study the reliability properties of the residual lifetime of such systems. Also, we present some stochastic ordering properties of residual lifetime of consecutive k -out-of- n systems. In the following, we investigate the inactivity time of the component with lifetime...

Small and large time stability of the time taken for a Lévy process to cross curved boundaries

Philip S. Griffin, Ross A. Maller (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

This paper is concerned with the small time behaviour of a Lévy process X . In particular, we investigate theof the times, T ¯ b ( r ) and T b * ( r ) , at which X , started with X 0 = 0 , first leaves the space-time regions { ( t , y ) 2 : y r t b , t 0 } (one-sided exit), or { ( t , y ) 2 : | y | r t b , t 0 } (two-sided exit), 0 b l t ; 1 , as r 0 . Thus essentially we determine whether or not these passage times behave like deterministic functions in the sense of different modes of convergence; specifically convergence in probability, almost surely and in L p . In many instances these are...

Nonconventional limit theorems in averaging

Yuri Kifer (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider “nonconventional” averaging setup in the form d X ε ( t ) d t = ε B ( X ε ( t ) , 𝛯 ( q 1 ( t ) ) , 𝛯 ( q 2 ( t ) ) , ... , 𝛯 ( q ( t ) ) ) where 𝛯 ( t ) , t 0 is either a stochastic process or a dynamical system with sufficiently fast mixing while q j ( t ) = α j t , α 1 l t ; α 2 l t ; l t ; α k and q j , j = k + 1 , ... , grow faster than linearly. We show that the properly normalized error term in the “nonconventional” averaging principle is asymptotically Gaussian.

From a kinetic equation to a diffusion under an anomalous scaling

Giada Basile (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

A linear Boltzmann equation is interpreted as the forward equation for the probability density of a Markov process ( K ( t ) , i ( t ) , Y ( t ) ) on ( 𝕋 2 × { 1 , 2 } × 2 ) , where 𝕋 2 is the two-dimensional torus. Here ( K ( t ) , i ( t ) ) is an autonomous reversible jump process, with waiting times between two jumps with finite expectation value but infinite variance. Y ( t ) is an additive functional of K , defined as 0 t v ( K ( s ) ) d s , where | v | 1 for small k . We prove that the rescaled process ( N ln N ) - 1 / 2 Y ( N t ) converges in distribution to a two-dimensional Brownian motion. As a consequence,...

Limit distributions for multitype branching processes of m -ary search trees

Brigitte Chauvin, Quansheng Liu, Nicolas Pouyanne (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Let m 3 be an integer. The so-calledis a discrete time Markov chain which is very popular in theoretical computer science, modelling famous algorithms used in searching and sorting. This random process satisfies a well-known phase transition: when m 26 , the asymptotic behavior of the process is Gaussian, but for m 27 it is no longer Gaussian and a limit W D T of a complex-valued martingale arises. In this paper, we consider the multitype branching process which is the continuous time version of...

On linear preservers of two-sided gut-majorization on 𝐌 n , m

Asma Ilkhanizadeh Manesh, Ahmad Mohammadhasani (2018)

Czechoslovak Mathematical Journal

Similarity:

For X , Y 𝐌 n , m it is said that X is gut-majorized by Y , and we write X gut Y , if there exists an n -by- n upper triangular g-row stochastic matrix R such that X = R Y . Define the relation gut as follows. X gut Y if X is gut-majorized by Y and Y is gut-majorized by X . The (strong) linear preservers of gut on n and strong linear preservers of this relation on 𝐌 n , m have been characterized before. This paper characterizes all (strong) linear preservers and strong linear preservers of gut on n and 𝐌 n , m .

Soft local times and decoupling of random interlacements

Serguei Popov, Augusto Teixeira (2015)

Journal of the European Mathematical Society

Similarity:

In this paper we establish a decoupling feature of the random interlacement process u d at level u , d 3 . Roughly speaking, we show that observations of u restricted to two disjoint subsets A 1 and A 2 of d are approximately independent, once we add a sprinkling to the process u by slightly increasing the parameter u . Our results differ from previous ones in that we allow the mutual distance between the sets A 1 and A 2 to be much smaller than their diameters. We then provide an important application...

H calculus and dilatations

Andreas M. Fröhlich, Lutz Weis (2006)

Bulletin de la Société Mathématique de France

Similarity:

We characterise the boundedness of the H calculus of a sectorial operator in terms of dilation theorems. We show e. g. that if - A generates a bounded analytic C 0 semigroup ( T t ) on a UMD space, then the H calculus of A is bounded if and only if ( T t ) has a dilation to a bounded group on L 2 ( [ 0 , 1 ] , X ) . This generalises a Hilbert space result of C.LeMerdy. If X is an L p space we can choose another L p space in place of L 2 ( [ 0 , 1 ] , X ) .

On row-sum majorization

Farzaneh Akbarzadeh, Ali Armandnejad (2019)

Czechoslovak Mathematical Journal

Similarity:

Let 𝕄 n , m be the set of all n × m real or complex matrices. For A , B 𝕄 n , m , we say that A is row-sum majorized by B (written as A rs B ) if R ( A ) R ( B ) , where R ( A ) is the row sum vector of A and is the classical majorization on n . In the present paper, the structure of all linear operators T : 𝕄 n , m 𝕄 n , m preserving or strongly preserving row-sum majorization is characterized. Also we consider the concepts of even and circulant majorization on n and then find the linear preservers of row-sum majorization of these relations on 𝕄 n , m . ...