Kinetic equations with Maxwell boundary conditions
Annales scientifiques de l'École Normale Supérieure (2010)
- Volume: 43, Issue: 5, page 719-760
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topMischler, Stéphane. "Kinetic equations with Maxwell boundary conditions." Annales scientifiques de l'École Normale Supérieure 43.5 (2010): 719-760. <http://eudml.org/doc/272103>.
@article{Mischler2010,
abstract = {We prove global stability results of DiPerna-Lionsrenormalized solutions for the initial boundary value problem associated to some kinetic equations, from which existence results classically follow. The (possibly nonlinear) boundary conditions are completely or partially diffuse, which includes the so-called Maxwell boundary conditions, and we prove that it is realized (it is not only a boundary inequality condition as it has been established in previous works). We are able to deal with Boltzmann, Vlasov-Poisson and Fokker-Planck type models. The proofs use some trace theorems of the kind previously introduced by the author for the Vlasov equations, new results concerning weak-weak convergence (the renormalized convergence and the biting $L^1$-weak convergence), as well as the Darrozès-Guiraud information in a crucial way.},
author = {Mischler, Stéphane},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Vlasov-Poisson; Boltzmann and Fokker-Planck equations; Maxwell or diffuse reflection; nonlinear gas-surface reflection laws; Darrozès-Guiraud information; trace theorems; renormalized convergence; biting lemma; Dunford-Pettis lemma},
language = {eng},
number = {5},
pages = {719-760},
publisher = {Société mathématique de France},
title = {Kinetic equations with Maxwell boundary conditions},
url = {http://eudml.org/doc/272103},
volume = {43},
year = {2010},
}
TY - JOUR
AU - Mischler, Stéphane
TI - Kinetic equations with Maxwell boundary conditions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 5
SP - 719
EP - 760
AB - We prove global stability results of DiPerna-Lionsrenormalized solutions for the initial boundary value problem associated to some kinetic equations, from which existence results classically follow. The (possibly nonlinear) boundary conditions are completely or partially diffuse, which includes the so-called Maxwell boundary conditions, and we prove that it is realized (it is not only a boundary inequality condition as it has been established in previous works). We are able to deal with Boltzmann, Vlasov-Poisson and Fokker-Planck type models. The proofs use some trace theorems of the kind previously introduced by the author for the Vlasov equations, new results concerning weak-weak convergence (the renormalized convergence and the biting $L^1$-weak convergence), as well as the Darrozès-Guiraud information in a crucial way.
LA - eng
KW - Vlasov-Poisson; Boltzmann and Fokker-Planck equations; Maxwell or diffuse reflection; nonlinear gas-surface reflection laws; Darrozès-Guiraud information; trace theorems; renormalized convergence; biting lemma; Dunford-Pettis lemma
UR - http://eudml.org/doc/272103
ER -
References
top- [1] N. B. Abdallah, Weak solutions of the initial-boundary value problem for the Vlasov-Poisson system, Math. Methods Appl. Sci.17 (1994), 451–476. Zbl0806.35172MR1274153
- [2] E. Acerbi & N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal.86 (1984), 125–145. Zbl0565.49010MR751305
- [3] V. I. Agoshkov, The existence of traces of functions in spaces used in problems of transport theory, Dokl. Akad. Nauk SSSR288 (1986), 265–269. Zbl0636.46038MR843433
- [4] R. Alexandre, Weak solutions of the Vlasov-Poisson initial-boundary value problem, Math. Methods Appl. Sci.16 (1993), 587–607. Zbl0786.35014MR1233042
- [5] L. Arkeryd & C. Cercignani, A global existence theorem for the initial-boundary value problem for the Boltzmann equation when the boundaries are not isothermal, Arch. Rational Mech. Anal.125 (1993), 271–287. Zbl0789.76075MR1245073
- [6] L. Arkeryd & A. Heintz, On the solvability and asymptotics of the Boltzmann equation in irregular domains, Comm. Partial Differential Equations22 (1997), 2129–2152. Zbl0896.45007MR1629463
- [7] L. Arkeryd & N. Maslova, On diffuse reflection at the boundary for the Boltzmann equation and related equations, J. Statist. Phys.77 (1994), 1051–1077. Zbl0839.76073MR1301931
- [8] L. Arkeryd & A. Nouri, Boltzmann asymptotics with diffuse reflection boundary conditions, Monatsh. Math.123 (1997), 285–298. Zbl0877.76063MR1448572
- [9] J. M. Ball & F. Murat, Remarks on Chacon’s biting lemma, Proc. Amer. Math. Soc.107 (1989), 655–663. Zbl0678.46023MR984807
- [10] C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d’approximation; application à l’équation de transport, Ann. Sci. École Norm. Sup.3 (1970), 185–233. Zbl0202.36903MR274925
- [11] R. Beals & V. Protopopescu, Abstract time-dependent transport equations, J. Math. Anal. Appl.121 (1987), 370–405. Zbl0657.45007MR872231
- [12] A. Bogdanov, V. Dubrovsky, M. Krutykov, D. Kulginov & V. Strelchenya, Interaction of gases with surfaces, Lecture Notes in Physics m25, Springer, 1995.
- [13] L. L. Bonilla, J. A. Carrillo & J. Soler, Asymptotic behavior of an initial boundary value problem for the Vlasov-Poisson-Fokker-Planck system, J. Funct. Anal.111 (1993), 239–258. Zbl0888.35018
- [14] F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Funct. Anal.111 (1993), 239–258. Zbl0777.35059MR1200643
- [15] F. Bouchut, Smoothing effect for the non-linear Vlasov-Poisson-Fokker-Planck system, J. Differential Equations122 (1995), 225–238. Zbl0840.35053MR1355890
- [16] F. Bouchut & J. Dolbeault, On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials, Differential Integral Equations8 (1995), 487–514. Zbl0830.35129MR1306570
- [17] J. K. Brooks & R. V. Chacon, Continuity and compactness of measures, Adv. in Math.37 (1980), 16–26. Zbl0463.28003MR585896
- [18] M. Cannone & C. Cercignani, A trace theorem in kinetic theory, Appl. Math. Lett.4 (1991), 63–67. Zbl0744.45005MR1136615
- [19] J. A. Carrillo, Global weak solutions for the initial-boundary-value problems to the Vlasov-Poisson-Fokker-Planck system, Math. Methods Appl. Sci.21 (1998), 907–938. Zbl0910.35101MR1634851
- [20] J. A. Carrillo & J. Soler, On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in spaces, Math. Methods Appl. Sci.18 (1995), 825–839. Zbl0829.35096MR1343393
- [21] J. A. Carrillo & J. Soler, On the Vlasov-Poisson-Fokker-Planck equations with measures in Morrey spaces as initial data, J. Math. Anal. Appl.207 (1997), 475–495. Zbl0876.35085MR1438925
- [22] J. A. Carrillo, J. Soler & J. L. Vázquez, Asymptotic behaviour and self-similarity for the three-dimensional Vlasov-Poisson-Fokker-Planck system, J. Funct. Anal.141 (1996), 99–132. Zbl0873.35066MR1414375
- [23] F. Castella, The Vlasov-Poisson-Fokker-Planck system with infinite kinetic energy, Indiana Univ. Math. J.47 (1998), 939–964. Zbl0926.35004MR1665725
- [24] P. Cembranos & J. Mendoza, Banach spaces of vector-valued functions, Lecture Notes in Math. 1676, Springer, 1997. Zbl0902.46017MR1489231
- [25] C. Cercignani, The Boltzmann equation and its applications, Applied Mathematical Sciences 67, Springer, 1988. Zbl0646.76001MR1313028
- [26] C. Cercignani, Scattering kernels for gas/surface interaction, in Proceeding of the workshop on hypersonic flows for reentry problems, INRIA, 1990, 9–29. Zbl0892.76076
- [27] C. Cercignani, On the initial-boundary value problem for the Boltzmann equation, Arch. Rational Mech. Anal.116 (1992), 307–315. Zbl0753.76151MR1132764
- [28] C. Cercignani, Initial-boundary value problems for the Boltzmann equation, in Proceedings of the Second International Workshop on Nonlinear Kinetic Theories and Mathematical Aspects of Hyperbolic Systems (Sanremo, 1994), 25, 1996, 425–436. Zbl0895.76082
- [29] C. Cercignani, R. Illner & M. Pulvirenti, The mathematical theory of dilute gases, Applied Mathematical Sciences 106, Springer, 1994. Zbl0813.76001
- [30] C. Cercignani, M. Lampis & A. Lentati, A new scattering kernel in kinetic theory of gases, Transport Theory Statist. Phys.24 (1995), 1319–1336. Zbl0874.76076
- [31] M. Cessenat, Théorèmes de trace pour des espaces de fonctions de la neutronique, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 831–834, 300 (1985), 89–92. Zbl0568.46030
- [32] S. Chandresekhar, Stochastic problems in physics and astronomy, Rev. Modern Phys.15 (1943), 1–89. Zbl0061.46403
- [33] R. Coifman, P.-L. Lions, Y. Meyer & S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl.72 (1993), 247–286. Zbl0864.42009
- [34] J. S. Darrozès & J. P. Guiraud, Généralisation formelle du théorème H en présence de parois, C. R. Acad. Sci. Paris262 (1966), 368–371.
- [35] R. DiPerna & P.-L. Lions, On the Fokker-Planck-Boltzmann equation, Comm. Math. Phys.120 (1988), 1–23. Zbl0671.35068
- [36] R. DiPerna & P.-L. Lions, Solutions globales d’équations du type Vlasov-Poisson, C. R. Acad. Sci. Paris Sér. I Math.307 (1988), 655–658. Zbl0682.35022MR967806
- [37] R. DiPerna & P.-L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math.130 (1989), 321–366. Zbl0698.45010MR1014927
- [38] R. DiPerna & P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math.98 (1989), 511–547. Zbl0696.34049MR1022305
- [39] R. DiPerna & P.-L. Lions, Global solutions of Boltzmann’s equation and the entropy inequality, Arch. Rational Mech. Anal.114 (1991), 47–55. Zbl0724.45011MR1088276
- [40] R. DiPerna, P.-L. Lions & Y. Meyer, regularity of velocity averages, Ann. Inst. H. Poincaré Anal. Non Linéaire8 (1991), 271–287. Zbl0763.35014MR1127927
- [41] V. F. Gaposhkin, Convergences and limit theorems for sequences of random variables, Theory of Probability App.17 (1979), 379–400. Zbl0273.60010
- [42] F. Golse, P.-L. Lions, B. Perthame & R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal.76 (1988), 110–125. Zbl0652.47031MR923047
- [43] T. Goudon, Existence of solutions of transport equations with nonlinear boundary conditions, European J. Mech. B Fluids16 (1997), 557–574. Zbl0881.35115MR1458980
- [44] T. Goudon, Sur quelques questions relatives à la théorie cinétique des gaz et à l’équation de Boltzmann, thèse de doctorat, Université de Bordeaux, 1997.
- [45] W. Greenberg, C. van der Mee & V. Protopopescu, Boundary value problems in abstract kinetic theory, Operator Theory: Advances and Applications 23, Birkhäuser, 1987. Zbl0624.35003MR896904
- [46] Y. Guo, Global weak solutions of the Vlasov-Maxwell system with boundary conditions, Comm. Math. Phys.154 (1993), 245–263. Zbl0787.35072MR1224079
- [47] K. Hamdache, Initial-boundary value problems for the Boltzmann equation: global existence of weak solutions, Arch. Rational Mech. Anal.119 (1992), 309–353. Zbl0777.76084MR1179690
- [48] A. Heintz, Boundary value problems for nonlinear Boltzmann equation in domains with irregular boundaries, Thèse, Leningrad State University, 1986.
- [49] L. Hörmander, Hypoelliptic second order differential equations, Acta Math.119 (1967), 147–171. Zbl0156.10701MR222474
- [50] M. I. Kadec & A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces , Studia Math. 21 (1961/1962), 161–176. Zbl0102.32202MR152879
- [51] I. Kuščer, Phenomenological aspects of gas-surface interaction, in Fundamental problems in statistical mechanics, IV (Proc. Fourth Internat. Summer School, Jadwisin, 1977), Ossolineum, 1978, 439–467. MR521726
- [52] P.-L. Lions, Compactness in Boltzmann’s equation via Fourier integral operators and applications. I, II, III, J. Math. Kyoto Univ. 34 (1994), 391–427, 429–461, 539–584. Zbl0831.35139MR1284432
- [53] P.-L. Lions, Conditions at infinity for Boltzmann’s equation, Comm. Partial Differential Equations19 (1994), 335–367. Zbl0799.35210MR1257008
- [54] J. C. Maxwell, On stresses in rarefied gases arising from inequalities of temperature, Phil. Trans. Roy. Soc. London 170 (1879), Appendix 231–256. Zbl11.0777.01JFM11.0777.01
- [55] S. Mischler, On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys.210 (2000), 447–466. Zbl0983.45007MR1776840
- [56] S. Mischler, On the trace problem for solutions of the Vlasov equation, Comm. Partial Differential Equations25 (2000), 1415–1443. Zbl0953.35028MR1765137
- [57] R. Pettersson, On solutions to the linear Boltzmann equation with general boundary conditions and infinite-range forces, J. Statist. Phys.59 (1990), 403–440. Zbl1083.82530MR1049973
- [58] F. Poupaud, Boundary value problems for the stationary Vlasov-Poisson system, C. R. Acad. Sci. Paris311 (1990), 307–312. Zbl0711.35139
- [59] K. Rein & J. Weckler, Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions, J. Differential Equations99 (1992), 59–77. Zbl0810.35090MR1178396
- [60] M. Saadoune & M. Valadier, Extraction of a “good” subsequence from a bounded sequence of integrable functions, J. Convex Anal.2 (1995), 345–357. Zbl0833.46018MR1363378
- [61] J. Soler, Asymptotic behaviour for the Vlasov-Poisson-Foker-Planck system, Nonlinear Anal.30 (1997), 5217–5228. Zbl0895.35082MR1726024
- [62] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton Univ. Press, 1970. Zbl0207.13501MR290095
- [63] L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math. 39, Pitman, 1979, 136–212. Zbl0437.35004MR584398
- [64] S. Ukai, Solutions of the Boltzmann equation, in Patterns and waves, Stud. Math. Appl. 18, North-Holland, 1986, 37–96. Zbl0633.76078MR882376
- [65] H. D. J. Victory & B. P. O’Dwyer, On classical solutions of Vlasov-Poisson-Fokker-Planck systems, Indiana Univ. Math. J.39 (1990), 105–156. Zbl0674.60097MR1052014
- [66] C. Villani, Contribution à l’étude mathématique des équations de Boltzmann et de Landau en théorie cinétique des gaz et des plasmas, thèse de doctorat, Université Paris Dauphine, 1998.
- [67] J. Voigt, Functional analytic treatment of the initial boundary value problem for collisionless gases, Habilitationsschrift, Universität München, 1980.
- [68] J. Weckler, On the initial-boundary-value problem for the Vlasov-Poisson system: existence of weak solutions and stability, Arch. Rational Mech. Anal.130 (1995), 145–161. Zbl0828.76097MR1338454
- [69] L. C. Young, Lectures on the calculus of variations and optimal control theory, W. B. Saunders Co., 1969. Zbl0177.37801MR259704
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.