Kinetic equations with Maxwell boundary conditions

Stéphane Mischler

Annales scientifiques de l'École Normale Supérieure (2010)

  • Volume: 43, Issue: 5, page 719-760
  • ISSN: 0012-9593

Abstract

top
We prove global stability results of DiPerna-Lionsrenormalized solutions for the initial boundary value problem associated to some kinetic equations, from which existence results classically follow. The (possibly nonlinear) boundary conditions are completely or partially diffuse, which includes the so-called Maxwell boundary conditions, and we prove that it is realized (it is not only a boundary inequality condition as it has been established in previous works). We are able to deal with Boltzmann, Vlasov-Poisson and Fokker-Planck type models. The proofs use some trace theorems of the kind previously introduced by the author for the Vlasov equations, new results concerning weak-weak convergence (the renormalized convergence and the biting L 1 -weak convergence), as well as the Darrozès-Guiraud information in a crucial way.

How to cite

top

Mischler, Stéphane. "Kinetic equations with Maxwell boundary conditions." Annales scientifiques de l'École Normale Supérieure 43.5 (2010): 719-760. <http://eudml.org/doc/272103>.

@article{Mischler2010,
abstract = {We prove global stability results of DiPerna-Lionsrenormalized solutions for the initial boundary value problem associated to some kinetic equations, from which existence results classically follow. The (possibly nonlinear) boundary conditions are completely or partially diffuse, which includes the so-called Maxwell boundary conditions, and we prove that it is realized (it is not only a boundary inequality condition as it has been established in previous works). We are able to deal with Boltzmann, Vlasov-Poisson and Fokker-Planck type models. The proofs use some trace theorems of the kind previously introduced by the author for the Vlasov equations, new results concerning weak-weak convergence (the renormalized convergence and the biting $L^1$-weak convergence), as well as the Darrozès-Guiraud information in a crucial way.},
author = {Mischler, Stéphane},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Vlasov-Poisson; Boltzmann and Fokker-Planck equations; Maxwell or diffuse reflection; nonlinear gas-surface reflection laws; Darrozès-Guiraud information; trace theorems; renormalized convergence; biting lemma; Dunford-Pettis lemma},
language = {eng},
number = {5},
pages = {719-760},
publisher = {Société mathématique de France},
title = {Kinetic equations with Maxwell boundary conditions},
url = {http://eudml.org/doc/272103},
volume = {43},
year = {2010},
}

TY - JOUR
AU - Mischler, Stéphane
TI - Kinetic equations with Maxwell boundary conditions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 5
SP - 719
EP - 760
AB - We prove global stability results of DiPerna-Lionsrenormalized solutions for the initial boundary value problem associated to some kinetic equations, from which existence results classically follow. The (possibly nonlinear) boundary conditions are completely or partially diffuse, which includes the so-called Maxwell boundary conditions, and we prove that it is realized (it is not only a boundary inequality condition as it has been established in previous works). We are able to deal with Boltzmann, Vlasov-Poisson and Fokker-Planck type models. The proofs use some trace theorems of the kind previously introduced by the author for the Vlasov equations, new results concerning weak-weak convergence (the renormalized convergence and the biting $L^1$-weak convergence), as well as the Darrozès-Guiraud information in a crucial way.
LA - eng
KW - Vlasov-Poisson; Boltzmann and Fokker-Planck equations; Maxwell or diffuse reflection; nonlinear gas-surface reflection laws; Darrozès-Guiraud information; trace theorems; renormalized convergence; biting lemma; Dunford-Pettis lemma
UR - http://eudml.org/doc/272103
ER -

References

top
  1. [1] N. B. Abdallah, Weak solutions of the initial-boundary value problem for the Vlasov-Poisson system, Math. Methods Appl. Sci.17 (1994), 451–476. Zbl0806.35172MR1274153
  2. [2] E. Acerbi & N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal.86 (1984), 125–145. Zbl0565.49010MR751305
  3. [3] V. I. Agoshkov, The existence of traces of functions in spaces used in problems of transport theory, Dokl. Akad. Nauk SSSR288 (1986), 265–269. Zbl0636.46038MR843433
  4. [4] R. Alexandre, Weak solutions of the Vlasov-Poisson initial-boundary value problem, Math. Methods Appl. Sci.16 (1993), 587–607. Zbl0786.35014MR1233042
  5. [5] L. Arkeryd & C. Cercignani, A global existence theorem for the initial-boundary value problem for the Boltzmann equation when the boundaries are not isothermal, Arch. Rational Mech. Anal.125 (1993), 271–287. Zbl0789.76075MR1245073
  6. [6] L. Arkeryd & A. Heintz, On the solvability and asymptotics of the Boltzmann equation in irregular domains, Comm. Partial Differential Equations22 (1997), 2129–2152. Zbl0896.45007MR1629463
  7. [7] L. Arkeryd & N. Maslova, On diffuse reflection at the boundary for the Boltzmann equation and related equations, J. Statist. Phys.77 (1994), 1051–1077. Zbl0839.76073MR1301931
  8. [8] L. Arkeryd & A. Nouri, Boltzmann asymptotics with diffuse reflection boundary conditions, Monatsh. Math.123 (1997), 285–298. Zbl0877.76063MR1448572
  9. [9] J. M. Ball & F. Murat, Remarks on Chacon’s biting lemma, Proc. Amer. Math. Soc.107 (1989), 655–663. Zbl0678.46023MR984807
  10. [10] C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d’approximation; application à l’équation de transport, Ann. Sci. École Norm. Sup.3 (1970), 185–233. Zbl0202.36903MR274925
  11. [11] R. Beals & V. Protopopescu, Abstract time-dependent transport equations, J. Math. Anal. Appl.121 (1987), 370–405. Zbl0657.45007MR872231
  12. [12] A. Bogdanov, V. Dubrovsky, M. Krutykov, D. Kulginov & V. Strelchenya, Interaction of gases with surfaces, Lecture Notes in Physics m25, Springer, 1995. 
  13. [13] L. L. Bonilla, J. A. Carrillo & J. Soler, Asymptotic behavior of an initial boundary value problem for the Vlasov-Poisson-Fokker-Planck system, J. Funct. Anal.111 (1993), 239–258. Zbl0888.35018
  14. [14] F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Funct. Anal.111 (1993), 239–258. Zbl0777.35059MR1200643
  15. [15] F. Bouchut, Smoothing effect for the non-linear Vlasov-Poisson-Fokker-Planck system, J. Differential Equations122 (1995), 225–238. Zbl0840.35053MR1355890
  16. [16] F. Bouchut & J. Dolbeault, On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials, Differential Integral Equations8 (1995), 487–514. Zbl0830.35129MR1306570
  17. [17] J. K. Brooks & R. V. Chacon, Continuity and compactness of measures, Adv. in Math.37 (1980), 16–26. Zbl0463.28003MR585896
  18. [18] M. Cannone & C. Cercignani, A trace theorem in kinetic theory, Appl. Math. Lett.4 (1991), 63–67. Zbl0744.45005MR1136615
  19. [19] J. A. Carrillo, Global weak solutions for the initial-boundary-value problems to the Vlasov-Poisson-Fokker-Planck system, Math. Methods Appl. Sci.21 (1998), 907–938. Zbl0910.35101MR1634851
  20. [20] J. A. Carrillo & J. Soler, On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in L p spaces, Math. Methods Appl. Sci.18 (1995), 825–839. Zbl0829.35096MR1343393
  21. [21] J. A. Carrillo & J. Soler, On the Vlasov-Poisson-Fokker-Planck equations with measures in Morrey spaces as initial data, J. Math. Anal. Appl.207 (1997), 475–495. Zbl0876.35085MR1438925
  22. [22] J. A. Carrillo, J. Soler & J. L. Vázquez, Asymptotic behaviour and self-similarity for the three-dimensional Vlasov-Poisson-Fokker-Planck system, J. Funct. Anal.141 (1996), 99–132. Zbl0873.35066MR1414375
  23. [23] F. Castella, The Vlasov-Poisson-Fokker-Planck system with infinite kinetic energy, Indiana Univ. Math. J.47 (1998), 939–964. Zbl0926.35004MR1665725
  24. [24] P. Cembranos & J. Mendoza, Banach spaces of vector-valued functions, Lecture Notes in Math. 1676, Springer, 1997. Zbl0902.46017MR1489231
  25. [25] C. Cercignani, The Boltzmann equation and its applications, Applied Mathematical Sciences 67, Springer, 1988. Zbl0646.76001MR1313028
  26. [26] C. Cercignani, Scattering kernels for gas/surface interaction, in Proceeding of the workshop on hypersonic flows for reentry problems, INRIA, 1990, 9–29. Zbl0892.76076
  27. [27] C. Cercignani, On the initial-boundary value problem for the Boltzmann equation, Arch. Rational Mech. Anal.116 (1992), 307–315. Zbl0753.76151MR1132764
  28. [28] C. Cercignani, Initial-boundary value problems for the Boltzmann equation, in Proceedings of the Second International Workshop on Nonlinear Kinetic Theories and Mathematical Aspects of Hyperbolic Systems (Sanremo, 1994), 25, 1996, 425–436. Zbl0895.76082
  29. [29] C. Cercignani, R. Illner & M. Pulvirenti, The mathematical theory of dilute gases, Applied Mathematical Sciences 106, Springer, 1994. Zbl0813.76001
  30. [30] C. Cercignani, M. Lampis & A. Lentati, A new scattering kernel in kinetic theory of gases, Transport Theory Statist. Phys.24 (1995), 1319–1336. Zbl0874.76076
  31. [31] M. Cessenat, Théorèmes de trace L p pour des espaces de fonctions de la neutronique, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 831–834, 300 (1985), 89–92. Zbl0568.46030
  32. [32] S. Chandresekhar, Stochastic problems in physics and astronomy, Rev. Modern Phys.15 (1943), 1–89. Zbl0061.46403
  33. [33] R. Coifman, P.-L. Lions, Y. Meyer & S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl.72 (1993), 247–286. Zbl0864.42009
  34. [34] J. S. Darrozès & J. P. Guiraud, Généralisation formelle du théorème H en présence de parois, C. R. Acad. Sci. Paris262 (1966), 368–371. 
  35. [35] R. DiPerna & P.-L. Lions, On the Fokker-Planck-Boltzmann equation, Comm. Math. Phys.120 (1988), 1–23. Zbl0671.35068
  36. [36] R. DiPerna & P.-L. Lions, Solutions globales d’équations du type Vlasov-Poisson, C. R. Acad. Sci. Paris Sér. I Math.307 (1988), 655–658. Zbl0682.35022MR967806
  37. [37] R. DiPerna & P.-L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math.130 (1989), 321–366. Zbl0698.45010MR1014927
  38. [38] R. DiPerna & P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math.98 (1989), 511–547. Zbl0696.34049MR1022305
  39. [39] R. DiPerna & P.-L. Lions, Global solutions of Boltzmann’s equation and the entropy inequality, Arch. Rational Mech. Anal.114 (1991), 47–55. Zbl0724.45011MR1088276
  40. [40] R. DiPerna, P.-L. Lions & Y. Meyer, L p regularity of velocity averages, Ann. Inst. H. Poincaré Anal. Non Linéaire8 (1991), 271–287. Zbl0763.35014MR1127927
  41. [41] V. F. Gaposhkin, Convergences and limit theorems for sequences of random variables, Theory of Probability App.17 (1979), 379–400. Zbl0273.60010
  42. [42] F. Golse, P.-L. Lions, B. Perthame & R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal.76 (1988), 110–125. Zbl0652.47031MR923047
  43. [43] T. Goudon, Existence of solutions of transport equations with nonlinear boundary conditions, European J. Mech. B Fluids16 (1997), 557–574. Zbl0881.35115MR1458980
  44. [44] T. Goudon, Sur quelques questions relatives à la théorie cinétique des gaz et à l’équation de Boltzmann, thèse de doctorat, Université de Bordeaux, 1997. 
  45. [45] W. Greenberg, C. van der Mee & V. Protopopescu, Boundary value problems in abstract kinetic theory, Operator Theory: Advances and Applications 23, Birkhäuser, 1987. Zbl0624.35003MR896904
  46. [46] Y. Guo, Global weak solutions of the Vlasov-Maxwell system with boundary conditions, Comm. Math. Phys.154 (1993), 245–263. Zbl0787.35072MR1224079
  47. [47] K. Hamdache, Initial-boundary value problems for the Boltzmann equation: global existence of weak solutions, Arch. Rational Mech. Anal.119 (1992), 309–353. Zbl0777.76084MR1179690
  48. [48] A. Heintz, Boundary value problems for nonlinear Boltzmann equation in domains with irregular boundaries, Thèse, Leningrad State University, 1986. 
  49. [49] L. Hörmander, Hypoelliptic second order differential equations, Acta Math.119 (1967), 147–171. Zbl0156.10701MR222474
  50. [50] M. I. Kadec & A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces L p , Studia Math. 21 (1961/1962), 161–176. Zbl0102.32202MR152879
  51. [51] I. Kuščer, Phenomenological aspects of gas-surface interaction, in Fundamental problems in statistical mechanics, IV (Proc. Fourth Internat. Summer School, Jadwisin, 1977), Ossolineum, 1978, 439–467. MR521726
  52. [52] P.-L. Lions, Compactness in Boltzmann’s equation via Fourier integral operators and applications. I, II, III, J. Math. Kyoto Univ. 34 (1994), 391–427, 429–461, 539–584. Zbl0831.35139MR1284432
  53. [53] P.-L. Lions, Conditions at infinity for Boltzmann’s equation, Comm. Partial Differential Equations19 (1994), 335–367. Zbl0799.35210MR1257008
  54. [54] J. C. Maxwell, On stresses in rarefied gases arising from inequalities of temperature, Phil. Trans. Roy. Soc. London 170 (1879), Appendix 231–256. Zbl11.0777.01JFM11.0777.01
  55. [55] S. Mischler, On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys.210 (2000), 447–466. Zbl0983.45007MR1776840
  56. [56] S. Mischler, On the trace problem for solutions of the Vlasov equation, Comm. Partial Differential Equations25 (2000), 1415–1443. Zbl0953.35028MR1765137
  57. [57] R. Pettersson, On solutions to the linear Boltzmann equation with general boundary conditions and infinite-range forces, J. Statist. Phys.59 (1990), 403–440. Zbl1083.82530MR1049973
  58. [58] F. Poupaud, Boundary value problems for the stationary Vlasov-Poisson system, C. R. Acad. Sci. Paris311 (1990), 307–312. Zbl0711.35139
  59. [59] K. Rein & J. Weckler, Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions, J. Differential Equations99 (1992), 59–77. Zbl0810.35090MR1178396
  60. [60] M. Saadoune & M. Valadier, Extraction of a “good” subsequence from a bounded sequence of integrable functions, J. Convex Anal.2 (1995), 345–357. Zbl0833.46018MR1363378
  61. [61] J. Soler, Asymptotic behaviour for the Vlasov-Poisson-Foker-Planck system, Nonlinear Anal.30 (1997), 5217–5228. Zbl0895.35082MR1726024
  62. [62] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton Univ. Press, 1970. Zbl0207.13501MR290095
  63. [63] L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math. 39, Pitman, 1979, 136–212. Zbl0437.35004MR584398
  64. [64] S. Ukai, Solutions of the Boltzmann equation, in Patterns and waves, Stud. Math. Appl. 18, North-Holland, 1986, 37–96. Zbl0633.76078MR882376
  65. [65] H. D. J. Victory & B. P. O’Dwyer, On classical solutions of Vlasov-Poisson-Fokker-Planck systems, Indiana Univ. Math. J.39 (1990), 105–156. Zbl0674.60097MR1052014
  66. [66] C. Villani, Contribution à l’étude mathématique des équations de Boltzmann et de Landau en théorie cinétique des gaz et des plasmas, thèse de doctorat, Université Paris Dauphine, 1998. 
  67. [67] J. Voigt, Functional analytic treatment of the initial boundary value problem for collisionless gases, Habilitationsschrift, Universität München, 1980. 
  68. [68] J. Weckler, On the initial-boundary-value problem for the Vlasov-Poisson system: existence of weak solutions and stability, Arch. Rational Mech. Anal.130 (1995), 145–161. Zbl0828.76097MR1338454
  69. [69] L. C. Young, Lectures on the calculus of variations and optimal control theory, W. B. Saunders Co., 1969. Zbl0177.37801MR259704

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.