Bounded Kähler class rigidity of actions on hermitian symmetric spaces
Annales scientifiques de l'École Normale Supérieure (2004)
- Volume: 37, Issue: 1, page 77-103
- ISSN: 0012-9593
Access Full Article
topHow to cite
topBurger, Marc, and Iozzi, Alessandra. "Bounded Kähler class rigidity of actions on hermitian symmetric spaces." Annales scientifiques de l'École Normale Supérieure 37.1 (2004): 77-103. <http://eudml.org/doc/82628>.
@article{Burger2004,
author = {Burger, Marc, Iozzi, Alessandra},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {bounded Kähler class; rigidity; Hermitian symmetric space},
language = {eng},
number = {1},
pages = {77-103},
publisher = {Elsevier},
title = {Bounded Kähler class rigidity of actions on hermitian symmetric spaces},
url = {http://eudml.org/doc/82628},
volume = {37},
year = {2004},
}
TY - JOUR
AU - Burger, Marc
AU - Iozzi, Alessandra
TI - Bounded Kähler class rigidity of actions on hermitian symmetric spaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 1
SP - 77
EP - 103
LA - eng
KW - bounded Kähler class; rigidity; Hermitian symmetric space
UR - http://eudml.org/doc/82628
ER -
References
top- [1] A'Campo N., Burger M., Réseaux arithmétiques et commensurateurs d'après G. A. Margulis, Invent. Math.116 (1994) 1-25. Zbl0833.22014MR1253187
- [2] Benoist Y., Actions propres sur les espaces homogènes réductifs, Ann. of Math. (2)144 (1996) 315-347. Zbl0868.22013MR1418901
- [3] Benoist Y., Labourie F., Sur les difféomorphismes d'Anosov affines à feuilletages stable et instable différentiables, Invent. Math.111 (1993) 285-308. Zbl0777.58029MR1198811
- [4] Bradlow S.B., Garcia-Prada O., Gothen P.B., Surface group representations in PU(p,q) and Higgs bundles, http://arxiv.org/abs/math.AG/0211431. Zbl1070.53054MR2123494
- [5] Brooks R., Some remarks on bounded cohomology, in: Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, NY, 1978) (Princeton, NJ), Ann. of Math. Stud., vol. 97, Princeton Univ. Press, 1981, pp. 53-63. Zbl0457.55002MR624804
- [6] Burger M., Iozzi A., Boundary maps in bounded cohomology, Geom. Funct. Anal.12 (2002) 281-292. Zbl1006.22011MR1911668
- [7] Burger M., Iozzi A., Wienhard A., Surface group representations with maximal Toledo invariant, C. R. Acad. Sci. Paris Sér. I336 (2003) 387-390. Zbl1035.32013MR1979350
- [8] Burger M., Monod N., Continuous bounded cohomology and applications, unpublished. Zbl1006.22010
- [9] Burger M., Monod N., Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal.12 (2002) 219-280. Zbl1006.22010MR1911660
- [10] Clerc J.L., Ørsted B., The Gromov norm of the Käehler class and the Maslov index, preprint, June 2002.
- [11] Domic A., Toledo D., The Gromov norm of the Käehler class of symmetric domains, Math. Ann.276 (3) (1987) 425-432. Zbl0595.53061MR875338
- [12] Dupont J.L., Bounds for Characteristic Numbers of Flat Bundles, in: Algebraic topology, Aarhus 1978, Lecture Notes in Mathematics, vol. 763, Springer-Verlag, 1979. Zbl0511.57018MR561216
- [13] Dupont J.L., Guichardet A., À propos de l'article: “Sur la cohomologie réelle des groupes de Lie simples réels”, Ann. Sci. École Norm. Sup. (4)11 (2) (1978) 277-292, par A. Guichardet et D. Wigner , Ann. Sci. École Norm. Sup. (4)11 (2) (1978) 293-295. Zbl0398.22016
- [14] Ghys É., Groupes d'homéomorphismes du cercle et cohomologie bornée, in: The Lefschetz Centennial Conference, Part III (Mexico City 1984), Contemp. Math., vol. 58, American Mathematical Society, RI, 1987, pp. 81-106. Zbl0617.58009MR893858
- [15] Ghys É., Le cercle à l'infini des surfaces à courbure négative, in: Proceedings of the International Congress of Mathematicians, vols. I, II (Kyoto, 1990) (Tokyo), Math. Soc. Japan, 1991, pp. 501-509. Zbl0747.53032MR1159237
- [16] Goldman W.M., Complex Hyperbolic Geometry, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1999, Oxford Science Publications. Zbl0939.32024MR1695450
- [17] Goldman W.M., Topological components of spaces of representations, Invent. Math.93 (3) (1988) 557-607. Zbl0655.57019MR952283
- [18] Grigorchuk R.I., Some results on bounded cohomology, in: Combinatorial and Geometric Group Theory (Edinburgh, 1993), London Math. Soc. Lecture Note Ser., vol. 204, Cambridge Univ. Press, Cambridge, 1995, pp. 111-163. Zbl0853.20034MR1320279
- [19] Guichardet A., Wigner D., Sur la cohomologie réelle des groupes de Lie simples réels, Ann. Sci. École Norm. Sup. (4)11 (2) (1978) 277-292. Zbl0398.22015MR510552
- [20] Gusevskii N., Parker J.R., Representations of free Fuchsian groups in complex hyperbolic space, Topology39 (2000) 33-60. Zbl0977.32017MR1710991
- [21] Hernàndez Lamoneda L., Maximal representations of surface groups in bounded symmetric domains, Trans. Amer. Math. Soc.324 (1991) 405-420. Zbl0733.32024MR1033234
- [22] Iozzi A., Bounded cohomology, boundary maps, and representations into Homeo+(S1) and SU(1,n), in: Rigidity in Dynamics and Geometry, Cambridge, UK, 2000, Springer-Verlag, 2002, pp. 237-260. Zbl1012.22023MR1919404
- [23] Kaimanovich V.A., The Poisson boundary of an amenable extension, Monatsh. Math.136 (1) (2002) 9-15. Zbl1004.43001MR1908077
- [24] Margulis G.A., Discrete Subgroups of Semisimple Lie Groups, Springer-Verlag, New York, 1991. Zbl0732.22008MR1090825
- [25] Matsumoto S., Some remarks on foliated S1 bundles, Invent. Math.90 (1987) 343-358. Zbl0681.58007MR910205
- [26] Mitsumatsu Y., Bounded cohomology and l1-homology of surfaces, Topology23 (4) (1984) 465-471. Zbl0568.55002MR780736
- [27] Monod N., Continuous Bounded Cohomology of Locally Compact Groups, Lecture Notes in Math., vol. 1758, Springer-Verlag, 2001. Zbl0967.22006MR1840942
- [28] Monod N., Shalom Y., Rigidity of orbit equivalence and bounded cohomology, Ann. Math., in press. Zbl1129.37003
- [29] Prasad G., R-regular elements in Zariski-dense subgroups, Quart. J. Math. Oxford Ser. (2)45 (180) (1994) 541-545. Zbl0828.22010MR1315463
- [30] Prasad G., Raghunathan M.S., Cartan subgroups and lattices in semi-simple groups, Ann. of Math.96 (1972) 296-317. Zbl0245.22013MR302822
- [31] Procesi C., Schwarz G., Inequalities defining orbit spaces, Invent. Math.81 (3) (1985) 539-554. Zbl0578.14010MR807071
- [32] Toledo D., Harmonic maps from surfaces to certain Kähler manifolds, Math. Scand.45 (1979) 13-26. Zbl0435.58008MR567429
- [33] Toledo D., Representations of surface groups in complex hyperbolic space, J. Differential Geom.29 (1) (1989) 125-133. Zbl0676.57012MR978081
- [34] Xia E.Z., The moduli of flat U(p,1) structures on Riemann surfaces, preprint, 2001. MR2003688
- [35] Zimmer R.J., Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Funct. Anal.27 (1978) 350-372. Zbl0391.28011MR473096
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.