Algebraic homotopy classes of rational functions

Christophe Cazanave

Annales scientifiques de l'École Normale Supérieure (2012)

  • Volume: 45, Issue: 4, page 511-534
  • ISSN: 0012-9593

Abstract

top
Let  k be a field. We compute the set 𝐏 1 , 𝐏 1 N ofnaivehomotopy classes of pointed k -scheme endomorphisms of the projective line 𝐏 1 . Our result compares well with Morel’s computation in [11] of thegroup 𝐏 1 , 𝐏 1 𝐀 1 of  𝐀 1 -homotopy classes of pointed endomorphisms of  𝐏 1 : the set 𝐏 1 , 𝐏 1 N admits an a priori monoid structure such that the canonical map 𝐏 1 , 𝐏 1 N 𝐏 1 , 𝐏 1 𝐀 1 is a group completion.

How to cite

top

Cazanave, Christophe. "Algebraic homotopy classes of rational functions." Annales scientifiques de l'École Normale Supérieure 45.4 (2012): 511-534. <http://eudml.org/doc/272113>.

@article{Cazanave2012,
abstract = {Let $k$ be a field. We compute the set $\{\left[\mathbf \{P\}^1, \mathbf \{P\}^1 \right]\}^\{\mathrm \{N\}\}$ ofnaivehomotopy classes of pointed $k$-scheme endomorphisms of the projective line $\mathbf \{P\}^1$. Our result compares well with Morel’s computation in [11] of thegroup$\{\left[\mathbf \{P\}^1, \mathbf \{P\}^1 \right]\}^\{\mathbf \{A\}^1\}$ of $\{\mathbf \{A\}^1\}$-homotopy classes of pointed endomorphisms of $\mathbf \{P\}^1$: the set $\{\left[\mathbf \{P\}^1, \mathbf \{P\}^1\right]\}^\{\mathrm \{N\}\}$ admits an a priori monoid structure such that the canonical map $\{\left[\mathbf \{P\}^1, \mathbf \{P\}^1 \right]\}^\{\mathrm \{N\}\} \rightarrow \{\left[\mathbf \{P\}^1, \mathbf \{P\}^1 \right]\}^\{\mathbf \{A\}^1\}$ is a group completion.},
author = {Cazanave, Christophe},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {naive homotopy classes; rational functions; projective line; group completion},
language = {eng},
number = {4},
pages = {511-534},
publisher = {Société mathématique de France},
title = {Algebraic homotopy classes of rational functions},
url = {http://eudml.org/doc/272113},
volume = {45},
year = {2012},
}

TY - JOUR
AU - Cazanave, Christophe
TI - Algebraic homotopy classes of rational functions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 4
SP - 511
EP - 534
AB - Let $k$ be a field. We compute the set ${\left[\mathbf {P}^1, \mathbf {P}^1 \right]}^{\mathrm {N}}$ ofnaivehomotopy classes of pointed $k$-scheme endomorphisms of the projective line $\mathbf {P}^1$. Our result compares well with Morel’s computation in [11] of thegroup${\left[\mathbf {P}^1, \mathbf {P}^1 \right]}^{\mathbf {A}^1}$ of ${\mathbf {A}^1}$-homotopy classes of pointed endomorphisms of $\mathbf {P}^1$: the set ${\left[\mathbf {P}^1, \mathbf {P}^1\right]}^{\mathrm {N}}$ admits an a priori monoid structure such that the canonical map ${\left[\mathbf {P}^1, \mathbf {P}^1 \right]}^{\mathrm {N}} \rightarrow {\left[\mathbf {P}^1, \mathbf {P}^1 \right]}^{\mathbf {A}^1}$ is a group completion.
LA - eng
KW - naive homotopy classes; rational functions; projective line; group completion
UR - http://eudml.org/doc/272113
ER -

References

top
  1. [1] N. Bourbaki, Éléments de mathématique. Algèbre, chapitre IV: Polynômes et fractions rationnelles, Hermann, Paris, 1950 ; réédition Springer, 2007. Zbl0060.06808
  2. [2] C. Cazanave, Classes d’homotopie de fractions rationnelles, C. R. Math. Acad. Sci. Paris346 (2008), 129–133. Zbl1151.14016MR2393628
  3. [3] C. Cazanave, Théorie homotopique des schémas d’Atiyah–Hitchin, thèse de doctorat, Université Paris 13, 2009. 
  4. [4] C. Cazanave, The 𝐀 1 -homotopy type of Atiyah–Hitchin schemes I: The geometry of complex points, preprint, 2010. 
  5. [5] I. M. Gelʼfand, M. M. Kapranov & A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser, 1994. Zbl0827.14036MR1264417
  6. [6] M. Karoubi & O. Villamayor, K -théorie algébrique et K -théorie topologique. I, Math. Scand. 28 (1971), 265–307. Zbl0231.18018MR313360
  7. [7] T. Y. Lam, Serre’s problem on projective modules, Springer Monographs in Math., Springer, 2006. Zbl1101.13001MR2235330
  8. [8] J. Milnor & D. Husemoller, Symmetric bilinear forms, Ergebn. Math. Grenzg. 73, Springer, 1973. Zbl0292.10016MR506372
  9. [9] F. Morel, Théorie homotopique des schémas, Astérisque 256 (1999). Zbl0933.55021
  10. [10] F. Morel, An introduction to 𝔸 1 -homotopy theory, in Contemporary developments in algebraic K -theory, ICTP Lect. Notes, XV, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, 357–441 (electronic). Zbl1081.14029MR2175638
  11. [11] F. Morel, 𝐀 1 -algebraic topology over a field, Lecture Notes in Math. 2052, Springer, 2012. Zbl1263.14003MR2934577
  12. [12] F. Morel & V. Voevodsky, 𝐀 1 -homotopy theory of schemes, Publ. Math. I.H.É.S. 90 (1999), 45–143. Zbl0983.14007MR1813224
  13. [13] D. G. Quillen, Homotopical algebra, Lecture Notes in Math., No. 43, Springer, 1967. Zbl0168.20903MR223432

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.