Algebraic homotopy classes of rational functions
Annales scientifiques de l'École Normale Supérieure (2012)
- Volume: 45, Issue: 4, page 511-534
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topCazanave, Christophe. "Algebraic homotopy classes of rational functions." Annales scientifiques de l'École Normale Supérieure 45.4 (2012): 511-534. <http://eudml.org/doc/272113>.
@article{Cazanave2012,
abstract = {Let $k$ be a field. We compute the set $\{\left[\mathbf \{P\}^1, \mathbf \{P\}^1 \right]\}^\{\mathrm \{N\}\}$ ofnaivehomotopy classes of pointed $k$-scheme endomorphisms of the projective line $\mathbf \{P\}^1$. Our result compares well with Morel’s computation in [11] of thegroup$\{\left[\mathbf \{P\}^1, \mathbf \{P\}^1 \right]\}^\{\mathbf \{A\}^1\}$ of $\{\mathbf \{A\}^1\}$-homotopy classes of pointed endomorphisms of $\mathbf \{P\}^1$: the set $\{\left[\mathbf \{P\}^1, \mathbf \{P\}^1\right]\}^\{\mathrm \{N\}\}$ admits an a priori monoid structure such that the canonical map $\{\left[\mathbf \{P\}^1, \mathbf \{P\}^1 \right]\}^\{\mathrm \{N\}\} \rightarrow \{\left[\mathbf \{P\}^1, \mathbf \{P\}^1 \right]\}^\{\mathbf \{A\}^1\}$ is a group completion.},
author = {Cazanave, Christophe},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {naive homotopy classes; rational functions; projective line; group completion},
language = {eng},
number = {4},
pages = {511-534},
publisher = {Société mathématique de France},
title = {Algebraic homotopy classes of rational functions},
url = {http://eudml.org/doc/272113},
volume = {45},
year = {2012},
}
TY - JOUR
AU - Cazanave, Christophe
TI - Algebraic homotopy classes of rational functions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 4
SP - 511
EP - 534
AB - Let $k$ be a field. We compute the set ${\left[\mathbf {P}^1, \mathbf {P}^1 \right]}^{\mathrm {N}}$ ofnaivehomotopy classes of pointed $k$-scheme endomorphisms of the projective line $\mathbf {P}^1$. Our result compares well with Morel’s computation in [11] of thegroup${\left[\mathbf {P}^1, \mathbf {P}^1 \right]}^{\mathbf {A}^1}$ of ${\mathbf {A}^1}$-homotopy classes of pointed endomorphisms of $\mathbf {P}^1$: the set ${\left[\mathbf {P}^1, \mathbf {P}^1\right]}^{\mathrm {N}}$ admits an a priori monoid structure such that the canonical map ${\left[\mathbf {P}^1, \mathbf {P}^1 \right]}^{\mathrm {N}} \rightarrow {\left[\mathbf {P}^1, \mathbf {P}^1 \right]}^{\mathbf {A}^1}$ is a group completion.
LA - eng
KW - naive homotopy classes; rational functions; projective line; group completion
UR - http://eudml.org/doc/272113
ER -
References
top- [1] N. Bourbaki, Éléments de mathématique. Algèbre, chapitre IV: Polynômes et fractions rationnelles, Hermann, Paris, 1950 ; réédition Springer, 2007. Zbl0060.06808
- [2] C. Cazanave, Classes d’homotopie de fractions rationnelles, C. R. Math. Acad. Sci. Paris346 (2008), 129–133. Zbl1151.14016MR2393628
- [3] C. Cazanave, Théorie homotopique des schémas d’Atiyah–Hitchin, thèse de doctorat, Université Paris 13, 2009.
- [4] C. Cazanave, The -homotopy type of Atiyah–Hitchin schemes I: The geometry of complex points, preprint, 2010.
- [5] I. M. Gelʼfand, M. M. Kapranov & A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser, 1994. Zbl0827.14036MR1264417
- [6] M. Karoubi & O. Villamayor, -théorie algébrique et -théorie topologique. I, Math. Scand. 28 (1971), 265–307. Zbl0231.18018MR313360
- [7] T. Y. Lam, Serre’s problem on projective modules, Springer Monographs in Math., Springer, 2006. Zbl1101.13001MR2235330
- [8] J. Milnor & D. Husemoller, Symmetric bilinear forms, Ergebn. Math. Grenzg. 73, Springer, 1973. Zbl0292.10016MR506372
- [9] F. Morel, Théorie homotopique des schémas, Astérisque 256 (1999). Zbl0933.55021
- [10] F. Morel, An introduction to -homotopy theory, in Contemporary developments in algebraic -theory, ICTP Lect. Notes, XV, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, 357–441 (electronic). Zbl1081.14029MR2175638
- [11] F. Morel, -algebraic topology over a field, Lecture Notes in Math. 2052, Springer, 2012. Zbl1263.14003MR2934577
- [12] F. Morel & V. Voevodsky, -homotopy theory of schemes, Publ. Math. I.H.É.S. 90 (1999), 45–143. Zbl0983.14007MR1813224
- [13] D. G. Quillen, Homotopical algebra, Lecture Notes in Math., No. 43, Springer, 1967. Zbl0168.20903MR223432
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.