Explicit Howe correspondence: dual pairs of type II
Annales scientifiques de l'École Normale Supérieure (2008)
- Volume: 41, Issue: 5, page 717-741
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topMínguez, Alberto. "Correspondance de Howe explicite : paires duales de type II." Annales scientifiques de l'École Normale Supérieure 41.5 (2008): 717-741. <http://eudml.org/doc/272116>.
@article{Mínguez2008,
abstract = {Dans cet article, nous proposons une nouvelle méthode pour démontrer la bijectivité de la correspondance de Howe pour les paires duales du type $\left( \{\rm GL\}_n, \{\rm GL\}_m \right)$ sur un corps $F$ localement compact non archimédien. La preuve est basée sur une étude soigneuse de la filtration de Kudla [11] ainsi que sur les résultats de [13] à propos de l’irréductibilité d’une représentation induite parabolique. Elle est valable pour $F$ de caractéristique quelconque et nous permet d’expliciter la bijection en termes des paramètres de Langlands. Elle généralise donc les résultats de [20] et répond totalement aux questions étudiées dans [15] et [16] pour les paires duales de type II.},
author = {Mínguez, Alberto},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {représentations de groupes $p$-adiques; correspondance de Howe; correspondance thêta},
language = {fre},
number = {5},
pages = {717-741},
publisher = {Société mathématique de France},
title = {Correspondance de Howe explicite : paires duales de type II},
url = {http://eudml.org/doc/272116},
volume = {41},
year = {2008},
}
TY - JOUR
AU - Mínguez, Alberto
TI - Correspondance de Howe explicite : paires duales de type II
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 5
SP - 717
EP - 741
AB - Dans cet article, nous proposons une nouvelle méthode pour démontrer la bijectivité de la correspondance de Howe pour les paires duales du type $\left( {\rm GL}_n, {\rm GL}_m \right)$ sur un corps $F$ localement compact non archimédien. La preuve est basée sur une étude soigneuse de la filtration de Kudla [11] ainsi que sur les résultats de [13] à propos de l’irréductibilité d’une représentation induite parabolique. Elle est valable pour $F$ de caractéristique quelconque et nous permet d’expliciter la bijection en termes des paramètres de Langlands. Elle généralise donc les résultats de [20] et répond totalement aux questions étudiées dans [15] et [16] pour les paires duales de type II.
LA - fre
KW - représentations de groupes $p$-adiques; correspondance de Howe; correspondance thêta
UR - http://eudml.org/doc/272116
ER -
References
top- [1] I. N. Bernšteĭn, Representations of -adic groups, Notes by K.E. Rumelhart, Harvard Univ., 1992.
- [2] I. N. Bernšteĭn & A. V. Zelevinskiĭ, Representations of the group where is a local non-Archimedean field, Uspehi Mat. Nauk31 (1976), 5–70. Zbl0342.43017
- [3] N. Bourbaki, Algèbre, Chapitre 2, Hermann, Paris, 1970.
- [4] C. J. Bushnell, Representations of reductive -adic groups : localization of Hecke algebras and applications, J. London Math. Soc.63 (2001), 364–386. Zbl1017.22011MR1810135
- [5] W. Casselman, Introduction to the theory of admissible representations of -adic reductive groups, preprint http://www.math.ubc.ca/~cass/research.html.
- [6] R. Godement & H. Jacquet, Zeta functions of simple algebras, Lecture Notes in Math., Vol. 260, Springer, 1972. Zbl0244.12011
- [7] M. Harris, S. S. Kudla & W. J. Sweet, Theta dichotomy for unitary groups, J. Amer. Math. Soc.9 (1996), 941–1004. Zbl0870.11026
- [8] M. Harris & R. Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies 151, Princeton University Press, 2001. Zbl1036.11027
- [9] G. Henniart, Une preuve simple des conjectures de Langlands pour sur un corps -adique, Invent. Math.139 (2000), 439–455. Zbl1048.11092MR1738446
- [10] S. S. Kudla, Notes on the local theta correspondence, in Lectures notes from the European School on Group Theory, Schloß Hirschberg, Germany, 1966. Zbl0583.22010
- [11] S. S. Kudla, On the local theta-correspondence, Invent. Math.83 (1986), 229–255. Zbl0583.22010MR818351
- [12] A. Mínguez, Correspondance de Howe -modulaire : paires duales de type II, Thèse, Université d’Orsay, 2006.
- [13] A. Mínguez, Sur l’irréductibilité d’une induite parabolique, preprint à paraître dans J. reine angew. Math.. Zbl1172.22008
- [14] C. Mœglin, M.-F. Vignéras & J.-L. Waldspurger, Correspondances de Howe sur un corps -adique, Lecture Notes in Math. 1291, Springer, 1987. Zbl0642.22002
- [15] G. Muić, Howe correspondence for discrete series representations ; the case of , J. reine angew. Math. 567 (2004), 99–150. Zbl1037.22037MR2038306
- [16] G. Muić, Theta lifts of tempered representations for dual pairs , à paraître dans Canad. J. Math.. Zbl1155.22012MR2462449
- [17] A. J. Silberger, The Langlands quotient theorem for -adic groups, Math. Ann.236 (1978), 95–104. Zbl0362.20029MR507262
- [18] M. Tadić, Induced representations of for -adic division algebras, J. reine angew. Math. 405 (1990), 48–77. Zbl0684.22008MR1040995
- [19] J.-L. Waldspurger, Démonstration d’une conjecture de dualité de Howe dans le cas -adique, , in Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Israel Math. Conf. Proc. 2, Weizmann, 1990, 267–324. Zbl0722.22009MR1159105
- [20] T. Watanabe, The local theta correspondence of irreducible type dual reductive pairs, Tohoku Math. J.47 (1995), 521–540. Zbl0842.11023MR1359725
- [21] A. V. Zelevinsky, Induced representations of reductive -adic groups. II. On irreducible representations of , Ann. Sci. École Norm. Sup. 13 (1980), 165–210. Zbl0441.22014MR584084
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.