A sufficient condition for the irreducibility of a parabolically induced representation of
Ioan Badulescu[1]; Erez Lapid[2]; Alberto Mínguez[3]
- [1] Université Montpellier 2 Institut de Mathématiques et de Modélisation de Montpellier Case courrier 051 34095 Montpellier cedex 5 (France)
- [2] Hebrew University of Jerusalem Institute of Mathematics Jerusalem 91904 (Israel)
- [3] Université Pierre et Marie Curie Institut de Mathématiques de Jussieu 4, place Jussieu 75005 Paris (France)
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 6, page 2239-2266
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBadulescu, Ioan, Lapid, Erez, and Mínguez, Alberto. "Une condition suffisante pour l’irréductibilité d’une induite parabolique de ${\rm GL}(m,{\rm D})$." Annales de l’institut Fourier 63.6 (2013): 2239-2266. <http://eudml.org/doc/275542>.
@article{Badulescu2013,
abstract = {Dans la théorie des représentations de $\{\rm GL\}_n$ (et ses formes intérieures) sur un corps local non-archimédien, nous disposons de deux classifications, dues à Zelevinsky et Langlands, construites à partir de certaines représentations segments $\{\rm Z\}(\Delta )$ et $\{\rm L\}(\Delta )$. Nous donnons une condition nécessaire et suffisante pour l’irréductibilité de l’induite parabolique $\{\rm Z\}(\Delta ) \times \{\rm L\}(\Delta ^\{\prime \})$ des segments $\Delta $, $\Delta ^\{\prime \}$. On en déduit des nouvelles conditions suffisantes pour l’irréductibilité d’une induite parabolique de représentations quelconques. Ce critère est particulièrement pratique pour les représentations dites en échelle.},
affiliation = {Université Montpellier 2 Institut de Mathématiques et de Modélisation de Montpellier Case courrier 051 34095 Montpellier cedex 5 (France); Hebrew University of Jerusalem Institute of Mathematics Jerusalem 91904 (Israel); Université Pierre et Marie Curie Institut de Mathématiques de Jussieu 4, place Jussieu 75005 Paris (France)},
author = {Badulescu, Ioan, Lapid, Erez, Mínguez, Alberto},
journal = {Annales de l’institut Fourier},
keywords = {induced representation; irreducibility; ladder representation},
language = {fre},
number = {6},
pages = {2239-2266},
publisher = {Association des Annales de l’institut Fourier},
title = {Une condition suffisante pour l’irréductibilité d’une induite parabolique de $\{\rm GL\}(m,\{\rm D\})$},
url = {http://eudml.org/doc/275542},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Badulescu, Ioan
AU - Lapid, Erez
AU - Mínguez, Alberto
TI - Une condition suffisante pour l’irréductibilité d’une induite parabolique de ${\rm GL}(m,{\rm D})$
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 6
SP - 2239
EP - 2266
AB - Dans la théorie des représentations de ${\rm GL}_n$ (et ses formes intérieures) sur un corps local non-archimédien, nous disposons de deux classifications, dues à Zelevinsky et Langlands, construites à partir de certaines représentations segments ${\rm Z}(\Delta )$ et ${\rm L}(\Delta )$. Nous donnons une condition nécessaire et suffisante pour l’irréductibilité de l’induite parabolique ${\rm Z}(\Delta ) \times {\rm L}(\Delta ^{\prime })$ des segments $\Delta $, $\Delta ^{\prime }$. On en déduit des nouvelles conditions suffisantes pour l’irréductibilité d’une induite parabolique de représentations quelconques. Ce critère est particulièrement pratique pour les représentations dites en échelle.
LA - fre
KW - induced representation; irreducibility; ladder representation
UR - http://eudml.org/doc/275542
ER -
References
top- Anne-Marie Aubert, Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif -adique, Trans. Amer. Math. Soc. 347 (1995), 2179-2189 Zbl0827.22005MR1285969
- Alexandre Ioan Badulescu, David Renard, Zelevinsky involution and Moeglin-Waldspurger algorithm for , Functional analysis IX 48 (2007), 9-15, Univ. Aarhus, Aarhus Zbl1139.22012MR2349436
- Alexandru Ioan Badulescu, On -adic Speh representations Zbl1305.22016
- Alexandru Ioan Badulescu, Un résultat d’irréductibilité en caractéristique non nulle, Tohoku Math. J. (2) 56 (2004), 583-592 Zbl1064.22003
- Alexandru Ioan Badulescu, Jacquet-Langlands et unitarisabilité, J. Inst. Math. Jussieu 6 (2007), 349-379 Zbl1159.22005MR2329758
- Alexandru Ioan Badulescu, Global Jacquet-Langlands correspondence, multiplicity one and classification of automorphic representations, Invent. Math. 172(2) (2008), 383-438 Zbl1158.22018MR2390289
- Alexandru Ioan Badulescu, Guy Henniart, Bertrand Lemaire, Vincent Sécherre, Sur le dual unitaire de , Amer. J. Math. 132 (2010), 1365-1396 Zbl1205.22011MR2732351
- I. N. Bernstein, A. V. Zelevinsky, Induced representations of reductive -adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), 441-472 Zbl0412.22015MR579172
- Joseph N. Bernstein, -invariant distributions on and the classification of unitary representations of (non-Archimedean case), Lie group representations, II (College Park, Md., 1982/1983) 1041 (1984), 50-102, Springer, Berlin Zbl0541.22009MR748505
- Pascal Boyer, Monodromie du faisceau pervers des cycles évanescents de quelques variétés de Shimura simples, Invent. Math. 177 (2009), 239-280 Zbl1172.14016MR2511742
- Gaëtan Chenevier, David Renard, Characters of Speh representations and Lewis Caroll identity, Represent. Theory 12 (2008), 447-452 Zbl1163.22008MR2465802
- P. Deligne, D. Kazhdan, M.-F. Vignéras, Représentations des algèbres centrales simples -adiques, Representations of reductive groups over a local field (1984), 33-117, Hermann, Paris Zbl0583.22009MR771672
- Erez Lapid, Alberto Mínguez, On a determinantal formula of Tadić Zbl1288.22013
- Alberto Mínguez, Correspondance de Howe explicite : paires duales de type II, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), 717-741 Zbl1220.22014MR2504432
- Alberto Mínguez, Sur l’irréductibilité d’une induite parabolique, J. Reine Angew. Math. 629 (2009), 107-131 Zbl1172.22008MR2527415
- Alberto Mínguez, Vincent Sécherre, Représentations banales de
- Alberto Mínguez, Vincent Sécherre, Représentations lisses modulo de Zbl1293.22005
- C. Mœglin, J.-L. Waldspurger, Sur l’involution de Zelevinski, J. Reine Angew. Math. 372 (1986), 136-177 Zbl0594.22008MR863522
- C. Mœglin, J.-L. Waldspurger, Le spectre résiduel de , Ann. Sci. École Norm. Sup. (4) 22 (1989), 605-674 Zbl0696.10023MR1026752
- Vincent Sécherre, Proof of the Tadić conjecture (U0) on the unitary dual of , J. Reine Angew. Math. 626 (2009), 187-203 Zbl1170.22009MR2492994
- Marko Tadić, Induced representations of for -adic division algebras , J. Reine Angew. Math. 405 (1990), 48-77 Zbl0684.22008MR1040995
- Marko Tadić, On characters of irreducible unitary representations of general linear groups, Abh. Math. Sem. Univ. Hamburg 65 (1995), 341-363 Zbl0856.22026MR1359141
- Marko Tadić, Representation theory of over a -adic division algebra and unitarity in the Jacquet-Langlands correspondence, Pacific J. Math. 223 (2006), 167-200 Zbl1124.22005MR2221023
- A. V. Zelevinsky, Induced representations of reductive -adic groups. II. On irreducible representations of , Ann. Sci. École Norm. Sup. (4) 13 (1980), 165-210 Zbl0441.22014MR584084
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.