On the structural theory of  II 1 factors of negatively curved groups

Ionut Chifan; Thomas Sinclair

Annales scientifiques de l'École Normale Supérieure (2013)

  • Volume: 46, Issue: 1, page 1-33
  • ISSN: 0012-9593

Abstract

top
Ozawa showed in [21] that for any i.c.c. hyperbolic group, the associated group factor L Γ is solid. Developing a new approach that combines some methods of Peterson [29], Ozawa and Popa [27, 28], and Ozawa [25], we strengthen this result by showing that L Γ is strongly solid. Using our methods in cooperation with a cocycle superrigidity result of Ioana [12], we show that profinite actions of lattices in  Sp ( n , 1 ) , n 2 , are virtually W * -superrigid.

How to cite

top

Chifan, Ionut, and Sinclair, Thomas. "On the structural theory of ${\rm II}_1$ factors of negatively curved groups." Annales scientifiques de l'École Normale Supérieure 46.1 (2013): 1-33. <http://eudml.org/doc/272124>.

@article{Chifan2013,
abstract = {Ozawa showed in [21] that for any i.c.c. hyperbolic group, the associated group factor $L\Gamma $ is solid. Developing a new approach that combines some methods of Peterson [29], Ozawa and Popa [27, 28], and Ozawa [25], we strengthen this result by showing that $L\Gamma $ is strongly solid. Using our methods in cooperation with a cocycle superrigidity result of Ioana [12], we show that profinite actions of lattices in $\{\rm Sp\}(n,1)$, $n\ge 2$, are virtually $W^*$-superrigid.},
author = {Chifan, Ionut, Sinclair, Thomas},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {strong solidity; negatively curved groups; bi-exact groups},
language = {eng},
number = {1},
pages = {1-33},
publisher = {Société mathématique de France},
title = {On the structural theory of $\{\rm II\}_1$ factors of negatively curved groups},
url = {http://eudml.org/doc/272124},
volume = {46},
year = {2013},
}

TY - JOUR
AU - Chifan, Ionut
AU - Sinclair, Thomas
TI - On the structural theory of ${\rm II}_1$ factors of negatively curved groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 1
SP - 1
EP - 33
AB - Ozawa showed in [21] that for any i.c.c. hyperbolic group, the associated group factor $L\Gamma $ is solid. Developing a new approach that combines some methods of Peterson [29], Ozawa and Popa [27, 28], and Ozawa [25], we strengthen this result by showing that $L\Gamma $ is strongly solid. Using our methods in cooperation with a cocycle superrigidity result of Ioana [12], we show that profinite actions of lattices in ${\rm Sp}(n,1)$, $n\ge 2$, are virtually $W^*$-superrigid.
LA - eng
KW - strong solidity; negatively curved groups; bi-exact groups
UR - http://eudml.org/doc/272124
ER -

References

top
  1. [1] S. Adams, Indecomposability of equivalence relations generated by word hyperbolic groups, Topology33 (1994), 785–798. Zbl0838.20043MR1293310
  2. [2] C. Anantharaman-Delaroche & J. Renault, Amenable groupoids, Monographies de l’enseignement mathématique 36, L’Enseignement mathématique, 2000. Zbl0960.43003MR1799683
  3. [3] B. Bekka, P. de la Harpe & A. Valette, Kazhdan’s property (T), New Mathematical Monographs 11, Cambridge Univ. Press, 2008. MR2415834
  4. [4] N. P. Brown & N. Ozawa, C * -algebras and finite-dimensional approximations, Graduate Studies in Math. 88, Amer. Math. Soc., 2008. MR2391387
  5. [5] M. Burger & N. Monod, Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal.12 (2002), 219–280. Zbl1006.22010MR1911660
  6. [6] I. Chifan, T. Sinclair & B. Udrea, On the structure of II 1 factors of negatively curved groups, II. Actions by product groups, preprint, 2011. Zbl1288.46037MR3084428
  7. [7] M. Cowling & U. Haagerup, Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math.96 (1989), 507–549. Zbl0681.43012MR996553
  8. [8] M. Cowling & R. J. Zimmer, Actions of lattices in Sp ( 1 , n ) , Ergodic Theory Dynam. Systems9 (1989), 221–237. Zbl0681.57026MR1007408
  9. [9] A. Furman, Orbit equivalence rigidity, Ann. of Math.150 (1999), 1083–1108. Zbl0943.22012MR1740985
  10. [10] U. Haagerup, Injectivity and decomposition of completely bounded maps, in Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983), Lecture Notes in Math. 1132, Springer, 1985, 170–222. MR799569
  11. [11] N. Higson & J. Roe, Amenable group actions and the Novikov conjecture, J. reine angew. Math. 519 (2000), 143–153. Zbl0964.55015MR1739727
  12. [12] A. Ioana, Cocycle superrigidity for profinite actions of property (T) groups, Duke Math. J.157 (2011), 337–367. Zbl1235.37005MR2783933
  13. [13] A. Ioana, J. Peterson & S. Popa, Amalgamated free products of weakly rigid factors and calculation of their symmetry groups, Acta Math.200 (2008), 85–153. Zbl1149.46047MR2386109
  14. [14] I. Mineyev, Straightening and bounded cohomology of hyperbolic groups, Geom. Funct. Anal.11 (2001), 807–839. Zbl1013.20034MR1866802
  15. [15] I. Mineyev, N. Monod & Y. Shalom, Ideal bicombings for hyperbolic groups and applications, Topology43 (2004), 1319–1344. Zbl1137.20033MR2081428
  16. [16] N. Monod, Continuous bounded cohomology of locally compact groups, Lecture Notes in Math. 1758, Springer, 2001. Zbl0967.22006MR1840942
  17. [17] N. Monod & Y. Shalom, Cocycle superrigidity and bounded cohomology for negatively curved spaces, J. Differential Geom.67 (2004), 395–455. Zbl1127.53035MR2153026
  18. [18] N. Monod & Y. Shalom, Orbit equivalence rigidity and bounded cohomology, Ann. of Math.164 (2006), 825–878. Zbl1129.37003MR2259246
  19. [19] D. V. Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc. 179 (2006). Zbl1093.20025MR2182268
  20. [20] N. Ozawa, Amenable actions and exactness for discrete groups, C. R. Acad. Sci. Paris Sér. I Math.330 (2000), 691–695. Zbl0953.43001MR1763912
  21. [21] N. Ozawa, Solid von Neumann algebras, Acta Math.192 (2004), 111–117. MR2079600
  22. [22] N. Ozawa, A Kurosh-type theorem for type II 1 factors, Int. Math. Res. Not. 2006 (2006), Art. ID 97560, 21. MR2211141
  23. [23] N. Ozawa, Weak amenability of hyperbolic groups, Groups Geom. Dyn.2 (2008), 271–280. Zbl1147.43003MR2393183
  24. [24] N. Ozawa, An example of a solid von Neumann algebra, Hokkaido Math. J.38 (2009), 557–561. Zbl1187.46048MR2548235
  25. [25] N. Ozawa, Examples of groups which are not weakly amenable, Kyoto J. Math.52 (2012), 333–344. Zbl1242.43007MR2914879
  26. [26] N. Ozawa & S. Popa, Some prime factorization results for type II 1 factors, Invent. Math.156 (2004), 223–234. Zbl1060.46044MR2052608
  27. [27] N. Ozawa & S. Popa, On a class of II 1 factors with at most one Cartan subalgebra, Ann. of Math.172 (2010), 713–749. Zbl1201.46054MR2680430
  28. [28] N. Ozawa & S. Popa, On a class of II 1 factors with at most one Cartan subalgebra, II, Amer. J. Math.132 (2010), 841–866. Zbl1213.46053MR2666909
  29. [29] J. Peterson, L 2 -rigidity in von Neumann algebras, Invent. Math.175 (2009), 417–433. Zbl1170.46053MR2470111
  30. [30] J. Peterson & T. Sinclair, On cocycle superrigidity for Gaussian actions, Ergodic Theory Dynam. Systems32 (2012), 249–272. Zbl1243.22005MR2873170
  31. [31] S. Popa, On a class of type II 1 factors with Betti numbers invariants, Ann. of Math.163 (2006), 809–899. Zbl1120.46045MR2215135
  32. [32] S. Popa, Deformation and rigidity for group actions and von Neumann algebras, in International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, 445–477. Zbl1132.46038MR2334200
  33. [33] S. Popa, On Ozawa’s property for free group factors, Int. Math. Res. Not. 2007 (2007), doi: 10.1093/imrn/rnm036. Zbl1134.46039MR2344271
  34. [34] S. Popa, On the superrigidity of malleable actions with spectral gap, J. Amer. Math. Soc.21 (2008), 981–1000. Zbl1222.46048MR2425177
  35. [35] S. Popa & S. Vaes, Unique Cartan decomposition for II 1 factors arising from arbitrary actions of hyperbolic groups, preprint arXiv:1201.2824. Zbl1307.46047
  36. [36] J. Roe, Lectures on coarse geometry, University Lecture Series 31, Amer. Math. Soc., 2003. MR2007488
  37. [37] H. Sako, Measure equivalence rigidity and bi-exactness of groups, J. Funct. Anal.257 (2009), 3167–3202. Zbl1256.37002MR2568688
  38. [38] Y. Shalom, Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group, Ann. of Math.152 (2000), 113–182. Zbl0970.22011MR1792293
  39. [39] T. Sinclair, Strong solidity of group factors from lattices in SO ( n , 1 ) and SU ( n , 1 ) , J. Funct. Anal.260 (2011), 3209–3221. Zbl1232.46055MR2776567
  40. [40] A. Thom, Low degree bounded cohomology and L 2 -invariants for negatively curved groups, Groups Geom. Dyn.3 (2009), 343–358. Zbl1162.22021MR2486803
  41. [41] S. Vaes, Explicit computations of all finite index bimodules for a family of II 1 factors, Ann. Sci. Éc. Norm. Supér. 41 (2008), 743–788. Zbl1194.46086MR2504433
  42. [42] S. Vaes, One-cohomology and the uniqueness of the group measure space decomposition of a II 1 factor, preprint arXiv:1012.5377. MR3010143
  43. [43] D. Voiculescu, The analogues of entropy and of Fisher’s information measure in free probability theory. III. The absence of Cartan subalgebras, Geom. Funct. Anal. 6 (1996), 172–199. Zbl0856.60012MR1371236
  44. [44] G. Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math.139 (2000), 201–240. Zbl0956.19004MR1728880

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.