# The Analogues of Entropy and of Fisher's Information Measure in Free Probability Theory III: The Absence of Cartan Subalgebras.

Geometric and functional analysis (1996)

- Volume: 6, Issue: 1, page 172-200
- ISSN: 1016-443X; 1420-8970/e

## Access Full Article

top## How to cite

topVoiculescu, D.. "The Analogues of Entropy and of Fisher's Information Measure in Free Probability Theory III: The Absence of Cartan Subalgebras.." Geometric and functional analysis 6.1 (1996): 172-200. <http://eudml.org/doc/58223>.

@article{Voiculescu1996,

author = {Voiculescu, D.},

journal = {Geometric and functional analysis},

keywords = {free entropy; von Neumann algebra problems; free group factors; hyperfinite subalgebra},

number = {1},

pages = {172-200},

title = {The Analogues of Entropy and of Fisher's Information Measure in Free Probability Theory III: The Absence of Cartan Subalgebras.},

url = {http://eudml.org/doc/58223},

volume = {6},

year = {1996},

}

TY - JOUR

AU - Voiculescu, D.

TI - The Analogues of Entropy and of Fisher's Information Measure in Free Probability Theory III: The Absence of Cartan Subalgebras.

JO - Geometric and functional analysis

PY - 1996

VL - 6

IS - 1

SP - 172

EP - 200

KW - free entropy; von Neumann algebra problems; free group factors; hyperfinite subalgebra

UR - http://eudml.org/doc/58223

ER -

## Citations in EuDML Documents

top- Fumio Hiai, Dénes Petz, A large deviation theorem for the empirical eigenvalue distribution of random unitary matrices
- Dan Voiculescu, The noncommutative Hilbert transform approach to free entropy
- Stanisław Szarek, Metric Entropy of Homogeneous Spaces
- Stefaan Vaes, États quasi-libres libres et facteurs de type III
- Ionut Chifan, Thomas Sinclair, On the structural theory of ${\mathrm{II}}_{1}$ factors of negatively curved groups
- Stefaan Vaes, Rigidity results for Bernoulli actions and their von Neumann algebras

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.