Geometry, integral points and integral curves
Annales scientifiques de l'École Normale Supérieure (2009)
- Volume: 42, Issue: 2, page 221-239
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topAutissier, Pascal. "Géométrie, points entiers et courbes entières." Annales scientifiques de l'École Normale Supérieure 42.2 (2009): 221-239. <http://eudml.org/doc/272125>.
@article{Autissier2009,
abstract = {Soit $X$ une variété projective sur un corps de nombres $K$ (resp. sur $\mathbb \{C\}$). Soit $H$ la somme de « suffisamment de diviseurs positifs » sur $X$. On montre que tout ensemble de points quasi-entiers (resp. toute courbe entière) dans $X-H$ est non Zariski-dense.},
author = {Autissier, Pascal},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {arithmetic geometry; height; integral points; diophantine approximation; hyperbolicity},
language = {fre},
number = {2},
pages = {221-239},
publisher = {Société mathématique de France},
title = {Géométrie, points entiers et courbes entières},
url = {http://eudml.org/doc/272125},
volume = {42},
year = {2009},
}
TY - JOUR
AU - Autissier, Pascal
TI - Géométrie, points entiers et courbes entières
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 2
SP - 221
EP - 239
AB - Soit $X$ une variété projective sur un corps de nombres $K$ (resp. sur $\mathbb {C}$). Soit $H$ la somme de « suffisamment de diviseurs positifs » sur $X$. On montre que tout ensemble de points quasi-entiers (resp. toute courbe entière) dans $X-H$ est non Zariski-dense.
LA - fre
KW - arithmetic geometry; height; integral points; diophantine approximation; hyperbolicity
UR - http://eudml.org/doc/272125
ER -
References
top- [1] F. Angelini, An algebraic version of Demailly’s asymptotic Morse inequalities, Proc. Amer. Math. Soc.124 (1996), 3265–3269. Zbl0860.14019MR1389502
- [2] P. Corvaja & U. Zannier, On a general Thue’s equation, Amer. J. Math.126 (2004), 1033–1055. Zbl1125.11022MR2089081
- [3] P. Corvaja & U. Zannier, On integral points on surfaces, Ann. of Math.160 (2004), 705–726. Zbl1146.11035MR2123936
- [4] J.-P. Demailly, vanishing theorems for positive line bundles and adjunction theory, in Transcendental methods in algebraic geometry (Cetraro, 1994), Lecture Notes in Math. 1646, Springer, 1996, 1–97. Zbl0883.14005MR1603616
- [5] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math.73 (1983), 349–366. Zbl0588.14026MR718935
- [6] G. Faltings, Diophantine approximation on abelian varieties, Ann. of Math.133 (1991), 549–576. Zbl0734.14007MR1109353
- [7] W. Fulton, Intersection theory, 2e éd., Ergebnisse der Mathematik und ihrer Grenzgebiete 2, Springer, 1998. Zbl0885.14002MR1644323
- [8] J.-P. Jouanolou, Théorèmes de Bertini et applications, Progress in Mathematics 42, Birkhäuser, 1983. Zbl0519.14002MR725671
- [9] S. Lang, Number theory. III, Encyclopaedia of Mathematical Sciences 60, Springer, 1991. Zbl0744.14012MR1112552
- [10] R. Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 48, Springer, 2004. Zbl1093.14500MR2095471
- [11] A. Levin, Generalizations of Siegel’s and Picard’s theorems, à paraître dans Annals of Math. arXiv :math.NT/0503699. Zbl1250.11067
- [12] H. P. Schlickewei, The -adic Thue-Siegel-Roth-Schmidt theorem, Arch. Math. (Basel) 29 (1977), 267–270. Zbl0365.10026MR491529
- [13] W. M. Schmidt, Diophantine approximation, Lecture Notes in Math. 785, Springer, 1980. Zbl0421.10019MR568710
- [14] P. Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Math. 1239, Springer, 1987. Zbl0609.14011MR883451
- [15] P. Vojta, A refinement of Schmidt’s subspace theorem, Amer. J. Math.111 (1989), 489–518. Zbl0662.14002MR1002010
- [16] P. Vojta, Integral points on subvarieties of semiabelian varieties. I, Invent. Math. 126 (1996), 133–181. Zbl1011.11040MR1408559
- [17] P. Vojta, On Cartan’s theorem and Cartan’s conjecture, Amer. J. Math.119 (1997), 1–17. Zbl0877.11040MR1428056
- [18] S. Zhang, Small points and adelic metrics, J. Algebraic Geom.4 (1995), 281–300. Zbl0861.14019MR1311351
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.