Geometry, integral points and integral curves

Pascal Autissier

Annales scientifiques de l'École Normale Supérieure (2009)

  • Volume: 42, Issue: 2, page 221-239
  • ISSN: 0012-9593

Abstract

top
Let X be a projective variety over a number field K (resp. over ). Let H be the sum of “sufficiently many positive divisors” on X . We show that any set of quasi-integral points (resp. any integral curve) in X - H is not Zariski dense.

How to cite

top

Autissier, Pascal. "Géométrie, points entiers et courbes entières." Annales scientifiques de l'École Normale Supérieure 42.2 (2009): 221-239. <http://eudml.org/doc/272125>.

@article{Autissier2009,
abstract = {Soit $X$ une variété projective sur un corps de nombres $K$ (resp. sur $\mathbb \{C\}$). Soit $H$ la somme de « suffisamment de diviseurs positifs » sur $X$. On montre que tout ensemble de points quasi-entiers (resp. toute courbe entière) dans $X-H$ est non Zariski-dense.},
author = {Autissier, Pascal},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {arithmetic geometry; height; integral points; diophantine approximation; hyperbolicity},
language = {fre},
number = {2},
pages = {221-239},
publisher = {Société mathématique de France},
title = {Géométrie, points entiers et courbes entières},
url = {http://eudml.org/doc/272125},
volume = {42},
year = {2009},
}

TY - JOUR
AU - Autissier, Pascal
TI - Géométrie, points entiers et courbes entières
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 2
SP - 221
EP - 239
AB - Soit $X$ une variété projective sur un corps de nombres $K$ (resp. sur $\mathbb {C}$). Soit $H$ la somme de « suffisamment de diviseurs positifs » sur $X$. On montre que tout ensemble de points quasi-entiers (resp. toute courbe entière) dans $X-H$ est non Zariski-dense.
LA - fre
KW - arithmetic geometry; height; integral points; diophantine approximation; hyperbolicity
UR - http://eudml.org/doc/272125
ER -

References

top
  1. [1] F. Angelini, An algebraic version of Demailly’s asymptotic Morse inequalities, Proc. Amer. Math. Soc.124 (1996), 3265–3269. Zbl0860.14019MR1389502
  2. [2] P. Corvaja & U. Zannier, On a general Thue’s equation, Amer. J. Math.126 (2004), 1033–1055. Zbl1125.11022MR2089081
  3. [3] P. Corvaja & U. Zannier, On integral points on surfaces, Ann. of Math.160 (2004), 705–726. Zbl1146.11035MR2123936
  4. [4] J.-P. Demailly, L 2 vanishing theorems for positive line bundles and adjunction theory, in Transcendental methods in algebraic geometry (Cetraro, 1994), Lecture Notes in Math. 1646, Springer, 1996, 1–97. Zbl0883.14005MR1603616
  5. [5] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math.73 (1983), 349–366. Zbl0588.14026MR718935
  6. [6] G. Faltings, Diophantine approximation on abelian varieties, Ann. of Math.133 (1991), 549–576. Zbl0734.14007MR1109353
  7. [7] W. Fulton, Intersection theory, 2e éd., Ergebnisse der Mathematik und ihrer Grenzgebiete 2, Springer, 1998. Zbl0885.14002MR1644323
  8. [8] J.-P. Jouanolou, Théorèmes de Bertini et applications, Progress in Mathematics 42, Birkhäuser, 1983. Zbl0519.14002MR725671
  9. [9] S. Lang, Number theory. III, Encyclopaedia of Mathematical Sciences 60, Springer, 1991. Zbl0744.14012MR1112552
  10. [10] R. Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 48, Springer, 2004. Zbl1093.14500MR2095471
  11. [11] A. Levin, Generalizations of Siegel’s and Picard’s theorems, à paraître dans Annals of Math. arXiv :math.NT/0503699. Zbl1250.11067
  12. [12] H. P. Schlickewei, The 𝔭 -adic Thue-Siegel-Roth-Schmidt theorem, Arch. Math. (Basel) 29 (1977), 267–270. Zbl0365.10026MR491529
  13. [13] W. M. Schmidt, Diophantine approximation, Lecture Notes in Math. 785, Springer, 1980. Zbl0421.10019MR568710
  14. [14] P. Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Math. 1239, Springer, 1987. Zbl0609.14011MR883451
  15. [15] P. Vojta, A refinement of Schmidt’s subspace theorem, Amer. J. Math.111 (1989), 489–518. Zbl0662.14002MR1002010
  16. [16] P. Vojta, Integral points on subvarieties of semiabelian varieties. I, Invent. Math. 126 (1996), 133–181. Zbl1011.11040MR1408559
  17. [17] P. Vojta, On Cartan’s theorem and Cartan’s conjecture, Amer. J. Math.119 (1997), 1–17. Zbl0877.11040MR1428056
  18. [18] S. Zhang, Small points and adelic metrics, J. Algebraic Geom.4 (1995), 281–300. Zbl0861.14019MR1311351

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.