A p-adic Nevanlinna-Diophantine correspondence
Page 1
Ta Thi Hoai An, Aaron Levin, Julie Tzu-Yueh Wang (2011)
Acta Arithmetica
Pascal Autissier (2009)
Annales scientifiques de l'École Normale Supérieure
Soit une variété projective sur un corps de nombres (resp. sur ). Soit la somme de « suffisamment de diviseurs positifs » sur . On montre que tout ensemble de points quasi-entiers (resp. toute courbe entière) dans est non Zariski-dense.
Do Duc Thai, Nguyen Huu Kien (2015)
Acta Arithmetica
The purpose of this article is twofold. The first is to find the dimension of the set of integral points off divisors in subgeneral position in a projective algebraic variety , where k is a number field. As consequences, the results of Ru-Wong (1991), Ru (1993), Noguchi-Winkelmann (2003) and Levin (2008) are recovered. The second is to show the complete hyperbolicity of the complement of divisors in subgeneral position in a projective algebraic variety
Joseph H. Silverman (2012)
Journal de Théorie des Nombres de Bordeaux
A number of authors have proven explicit versions of Lehmer’s conjecture for polynomials whose coefficients are all congruent to modulo . We prove a similar result for polynomials that are divisible in by a polynomial of the form for some . We also formulate and prove an analogous statement for elliptic curves.
Charles F. Osgood (2001)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Aaron Levin (2008)
Acta Arithmetica
Ta Thi Hoai An, Julie Tzu-Yueh Wang, Pit-Mann Wong (2005)
Acta Arithmetica
Page 1