Base change for Bernstein centers of depth zero principal series blocks
Annales scientifiques de l'École Normale Supérieure (2012)
- Volume: 45, Issue: 5, page 681-718
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topHaines, Thomas J.. "Base change for Bernstein centers of depth zero principal series blocks." Annales scientifiques de l'École Normale Supérieure 45.5 (2012): 681-718. <http://eudml.org/doc/272126>.
@article{Haines2012,
abstract = {Let $G$ be an unramified group over a $p$-adic field. This article introduces a base change homomorphism for Bernstein centers of depth-zero principal series blocks for $G$ and proves the corresponding base change fundamental lemma. This result is used in the approach to Shimura varieties with $\Gamma _1(p)$-level structure initiated by M. Rapoport and the author in [15].},
author = {Haines, Thomas J.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {orbital integrals on $p$-adic groups; Arthur-Selberg trace formula},
language = {eng},
number = {5},
pages = {681-718},
publisher = {Société mathématique de France},
title = {Base change for Bernstein centers of depth zero principal series blocks},
url = {http://eudml.org/doc/272126},
volume = {45},
year = {2012},
}
TY - JOUR
AU - Haines, Thomas J.
TI - Base change for Bernstein centers of depth zero principal series blocks
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 5
SP - 681
EP - 718
AB - Let $G$ be an unramified group over a $p$-adic field. This article introduces a base change homomorphism for Bernstein centers of depth-zero principal series blocks for $G$ and proves the corresponding base change fundamental lemma. This result is used in the approach to Shimura varieties with $\Gamma _1(p)$-level structure initiated by M. Rapoport and the author in [15].
LA - eng
KW - orbital integrals on $p$-adic groups; Arthur-Selberg trace formula
UR - http://eudml.org/doc/272126
ER -
References
top- [1] J. Arthur & L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Math. Studies 120, Princeton Univ. Press, 1989. Zbl0682.10022MR1007299
- [2] J. N. Bernstein, Le « centre » de Bernstein, in Représentations des groupes réductifs sur un corps local (P. Deligne, éd.), Travaux en Cours, Hermann, 1984, 1–32. Zbl0599.22016MR771671
- [3] F. Bruhat & J. Tits, Groupes réductifs sur un corps local. II, Publ. Math. I.H.É.S. 60 (1984), 5–184. Zbl0254.14017
- [4] C. J. Bushnell & P. C. Kutzko, Smooth representations of reductive -adic groups: structure theory via types, Proc. London Math. Soc.77 (1998), 582–634. Zbl0911.22014MR1643417
- [5] W. Casselman, Characters and Jacquet modules, Math. Ann.230 (1977), 101–105. Zbl0337.22019MR492083
- [6] W. Casselman, Introduction to the theory of admissible representations of -adic reductive groups, unpublished notes, 1995.
- [7] L. Clozel, The fundamental lemma for stable base change, Duke Math. J.61 (1990), 255–302. Zbl0731.22011MR1068388
- [8] P. Deligne, Le support du caractère d’une représentation supercuspidale, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), A155–A157. Zbl0336.22009MR425033
- [9] D. J. Goldstein, Hecke algebra isomorphisms for tamely ramified characters, Thèse, The University of Chicago, 1990. MR2611915
- [10] T. J. Haines, Introduction to Shimura varieties with bad reduction of parahoric type, in Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc. 4, Amer. Math. Soc., 2005, 583–642. Zbl1148.11028MR2192017
- [11] T. J. Haines, The base change fundamental lemma for central elements in parahoric Hecke algebras, Duke Math. J.149 (2009), 569–643. Zbl1194.22019MR2553880
- [12] T. J. Haines, On Hecke algebra isomorphisms and types for depth-zero principal series, expository note available at http://www.math.umd.edu/~tjh, 2009.
- [13] T. J. Haines & M. Rapoport, On parahoric subgroups, Adv. Math. 219 (2008), 188–198, appendix to [29].
- [14] T. J. Haines & M. Rapoport, Shimura varieties with -level via Hecke algebra isomorphisms: the Drinfeld case, Ann. Sci. École Norm. Sup.45 (2012), 719–785. Zbl1337.11041MR3053008
- [15] T. C. Hales, On the fundamental lemma for standard endoscopy: reduction to unit elements, Canad. J. Math.47 (1995), 974–994. Zbl0840.22032MR1350645
- [16] D. Keys, Reducibility of unramified unitary principal series representations of -adic groups and class- representations, Math. Ann.260 (1982), 397–402. Zbl0488.22026MR670188
- [17] R. E. Kottwitz, Rational conjugacy classes in reductive groups, Duke Math. J.49 (1982), 785–806. Zbl0506.20017MR683003
- [18] R. E. Kottwitz, Base change for unit elements of Hecke algebras, Compositio Math.60 (1986), 237–250. MR868140
- [19] R. E. Kottwitz, Tamagawa numbers, Ann. of Math.127 (1988), 629–646. Zbl0678.22012MR942522
- [20] R. E. Kottwitz, Shimura varieties and -adic representations, in Automorphic forms, Shimura varieties, and -functions, Vol. I (Ann Arbor, MI, 1988), Perspect. Math. 10, Academic Press, 1990, 161–209. Zbl0743.14019MR1044820
- [21] R. E. Kottwitz, On the -adic representations associated to some simple Shimura varieties, Invent. Math.108 (1992), 653–665. Zbl0765.22011MR1163241
- [22] R. E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc.5 (1992), 373–444. Zbl0796.14014MR1124982
- [23] R. E. Kottwitz, Isocrystals with additional structure. II, Compositio Math. 109 (1997), 255–339. Zbl0966.20022MR1485921
- [24] J.-P. Labesse, Fonctions élémentaires et lemme fondamental pour le changement de base stable, Duke Math. J.61 (1990), 519–530. Zbl0731.22012MR1074306
- [25] J.-P. Labesse, Noninvariant base change identities, Mém. Soc. Math. France (N.S.) 61 (1995). Zbl0868.11026MR1339717
- [26] J.-P. Labesse, Cohomologie, stabilisation et changement de base, Astérisque 257 (1999). Zbl1024.11034MR1695940
- [27] R. P. Langlands, Base change for , Annals of Math. Studies 96, Princeton Univ. Press, 1980. Zbl0444.22007MR574808
- [28] L. Morris, Tamely ramified intertwining algebras, Invent. Math.114 (1993), 1–54. Zbl0854.22022MR1235019
- [29] G. Pappas & M. Rapoport, Twisted loop groups and their affine flag varieties, Adv. Math.219 (2008), 118–198. Zbl1159.22010MR2435422
- [30] A. Roche, Types and Hecke algebras for principal series representations of split reductive -adic groups, Ann. Sci. École Norm. Sup.31 (1998), 361–413. Zbl0903.22009MR1621409
- [31] J. D. Rogawski, Trace Paley-Wiener theorem in the twisted case, Trans. Amer. Math. Soc.309 (1988), 215–229. Zbl0663.22011MR957068
- [32] J-P. Serre, Local fields, Graduate Texts in Math. 67, Springer, 1979. Zbl0423.12016MR554237
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.