Base change for Bernstein centers of depth zero principal series blocks

Thomas J. Haines

Annales scientifiques de l'École Normale Supérieure (2012)

  • Volume: 45, Issue: 5, page 681-718
  • ISSN: 0012-9593

Abstract

top
Let  G be an unramified group over a p -adic field. This article introduces a base change homomorphism for Bernstein centers of depth-zero principal series blocks for  G and proves the corresponding base change fundamental lemma. This result is used in the approach to Shimura varieties with Γ 1 ( p ) -level structure initiated by M. Rapoport and the author in [15].

How to cite

top

Haines, Thomas J.. "Base change for Bernstein centers of depth zero principal series blocks." Annales scientifiques de l'École Normale Supérieure 45.5 (2012): 681-718. <http://eudml.org/doc/272126>.

@article{Haines2012,
abstract = {Let $G$ be an unramified group over a $p$-adic field. This article introduces a base change homomorphism for Bernstein centers of depth-zero principal series blocks for $G$ and proves the corresponding base change fundamental lemma. This result is used in the approach to Shimura varieties with $\Gamma _1(p)$-level structure initiated by M. Rapoport and the author in [15].},
author = {Haines, Thomas J.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {orbital integrals on $p$-adic groups; Arthur-Selberg trace formula},
language = {eng},
number = {5},
pages = {681-718},
publisher = {Société mathématique de France},
title = {Base change for Bernstein centers of depth zero principal series blocks},
url = {http://eudml.org/doc/272126},
volume = {45},
year = {2012},
}

TY - JOUR
AU - Haines, Thomas J.
TI - Base change for Bernstein centers of depth zero principal series blocks
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 5
SP - 681
EP - 718
AB - Let $G$ be an unramified group over a $p$-adic field. This article introduces a base change homomorphism for Bernstein centers of depth-zero principal series blocks for $G$ and proves the corresponding base change fundamental lemma. This result is used in the approach to Shimura varieties with $\Gamma _1(p)$-level structure initiated by M. Rapoport and the author in [15].
LA - eng
KW - orbital integrals on $p$-adic groups; Arthur-Selberg trace formula
UR - http://eudml.org/doc/272126
ER -

References

top
  1. [1] J. Arthur & L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Math. Studies 120, Princeton Univ. Press, 1989. Zbl0682.10022MR1007299
  2. [2] J. N. Bernstein, Le « centre » de Bernstein, in Représentations des groupes réductifs sur un corps local (P. Deligne, éd.), Travaux en Cours, Hermann, 1984, 1–32. Zbl0599.22016MR771671
  3. [3] F. Bruhat & J. Tits, Groupes réductifs sur un corps local. II, Publ. Math. I.H.É.S. 60 (1984), 5–184. Zbl0254.14017
  4. [4] C. J. Bushnell & P. C. Kutzko, Smooth representations of reductive p -adic groups: structure theory via types, Proc. London Math. Soc.77 (1998), 582–634. Zbl0911.22014MR1643417
  5. [5] W. Casselman, Characters and Jacquet modules, Math. Ann.230 (1977), 101–105. Zbl0337.22019MR492083
  6. [6] W. Casselman, Introduction to the theory of admissible representations of p -adic reductive groups, unpublished notes, 1995. 
  7. [7] L. Clozel, The fundamental lemma for stable base change, Duke Math. J.61 (1990), 255–302. Zbl0731.22011MR1068388
  8. [8] P. Deligne, Le support du caractère d’une représentation supercuspidale, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), A155–A157. Zbl0336.22009MR425033
  9. [9] D. J. Goldstein, Hecke algebra isomorphisms for tamely ramified characters, Thèse, The University of Chicago, 1990. MR2611915
  10. [10] T. J. Haines, Introduction to Shimura varieties with bad reduction of parahoric type, in Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc. 4, Amer. Math. Soc., 2005, 583–642. Zbl1148.11028MR2192017
  11. [11] T. J. Haines, The base change fundamental lemma for central elements in parahoric Hecke algebras, Duke Math. J.149 (2009), 569–643. Zbl1194.22019MR2553880
  12. [12] T. J. Haines, On Hecke algebra isomorphisms and types for depth-zero principal series, expository note available at http://www.math.umd.edu/~tjh, 2009. 
  13. [13] T. J. Haines & M. Rapoport, On parahoric subgroups, Adv. Math. 219 (2008), 188–198, appendix to [29]. 
  14. [14] T. J. Haines & M. Rapoport, Shimura varieties with Γ 1 ( p ) -level via Hecke algebra isomorphisms: the Drinfeld case, Ann. Sci. École Norm. Sup.45 (2012), 719–785. Zbl1337.11041MR3053008
  15. [15] T. C. Hales, On the fundamental lemma for standard endoscopy: reduction to unit elements, Canad. J. Math.47 (1995), 974–994. Zbl0840.22032MR1350645
  16. [16] D. Keys, Reducibility of unramified unitary principal series representations of p -adic groups and class- 1 representations, Math. Ann.260 (1982), 397–402. Zbl0488.22026MR670188
  17. [17] R. E. Kottwitz, Rational conjugacy classes in reductive groups, Duke Math. J.49 (1982), 785–806. Zbl0506.20017MR683003
  18. [18] R. E. Kottwitz, Base change for unit elements of Hecke algebras, Compositio Math.60 (1986), 237–250. MR868140
  19. [19] R. E. Kottwitz, Tamagawa numbers, Ann. of Math.127 (1988), 629–646. Zbl0678.22012MR942522
  20. [20] R. E. Kottwitz, Shimura varieties and λ -adic representations, in Automorphic forms, Shimura varieties, and L -functions, Vol. I (Ann Arbor, MI, 1988), Perspect. Math. 10, Academic Press, 1990, 161–209. Zbl0743.14019MR1044820
  21. [21] R. E. Kottwitz, On the λ -adic representations associated to some simple Shimura varieties, Invent. Math.108 (1992), 653–665. Zbl0765.22011MR1163241
  22. [22] R. E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc.5 (1992), 373–444. Zbl0796.14014MR1124982
  23. [23] R. E. Kottwitz, Isocrystals with additional structure. II, Compositio Math. 109 (1997), 255–339. Zbl0966.20022MR1485921
  24. [24] J.-P. Labesse, Fonctions élémentaires et lemme fondamental pour le changement de base stable, Duke Math. J.61 (1990), 519–530. Zbl0731.22012MR1074306
  25. [25] J.-P. Labesse, Noninvariant base change identities, Mém. Soc. Math. France (N.S.) 61 (1995). Zbl0868.11026MR1339717
  26. [26] J.-P. Labesse, Cohomologie, stabilisation et changement de base, Astérisque 257 (1999). Zbl1024.11034MR1695940
  27. [27] R. P. Langlands, Base change for GL ( 2 ) , Annals of Math. Studies 96, Princeton Univ. Press, 1980. Zbl0444.22007MR574808
  28. [28] L. Morris, Tamely ramified intertwining algebras, Invent. Math.114 (1993), 1–54. Zbl0854.22022MR1235019
  29. [29] G. Pappas & M. Rapoport, Twisted loop groups and their affine flag varieties, Adv. Math.219 (2008), 118–198. Zbl1159.22010MR2435422
  30. [30] A. Roche, Types and Hecke algebras for principal series representations of split reductive p -adic groups, Ann. Sci. École Norm. Sup.31 (1998), 361–413. Zbl0903.22009MR1621409
  31. [31] J. D. Rogawski, Trace Paley-Wiener theorem in the twisted case, Trans. Amer. Math. Soc.309 (1988), 215–229. Zbl0663.22011MR957068
  32. [32] J-P. Serre, Local fields, Graduate Texts in Math. 67, Springer, 1979. Zbl0423.12016MR554237

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.