Stable homoclinic tangencies for hyperbolic sets of large fractal dimension
Carlos Gustavo Moreira; Jean-Christophe Yoccoz
Annales scientifiques de l'École Normale Supérieure (2010)
- Volume: 43, Issue: 1, page 1-68
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topMoreira, Carlos Gustavo, and Yoccoz, Jean-Christophe. "Tangences homoclines stables pour des ensembles hyperboliques de grande dimension fractale." Annales scientifiques de l'École Normale Supérieure 43.1 (2010): 1-68. <http://eudml.org/doc/272127>.
@article{Moreira2010,
abstract = {Soit $F_0$ un difféomorphisme d’une surface possédant deux fers à cheval $\Lambda , \Lambda ^\{\prime \}$ tels que $W^s \Lambda $ et $W^u \Lambda ^\{\prime \}$ aient en un point $q$ une tangence quadratique isolée. Nous montrons que, si la somme des dimensions transverses de $W^s \Lambda $ et $W^u \Lambda ^\{\prime \}$ est strictement plus grande que 1, les difféomorphismes voisins de $F_0$ tels que $W^s \Lambda $ et $W^u \Lambda ^\{\prime \}$ soient stablement tangents au voisinage de $q$ forment une partie de densité inférieure strictement positive en $F_0$.},
author = {Moreira, Carlos Gustavo, Yoccoz, Jean-Christophe},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {homoclinic bifurcation; homoclinic tangency; horseshoe; fractal dimension},
language = {fre},
number = {1},
pages = {1-68},
publisher = {Société mathématique de France},
title = {Tangences homoclines stables pour des ensembles hyperboliques de grande dimension fractale},
url = {http://eudml.org/doc/272127},
volume = {43},
year = {2010},
}
TY - JOUR
AU - Moreira, Carlos Gustavo
AU - Yoccoz, Jean-Christophe
TI - Tangences homoclines stables pour des ensembles hyperboliques de grande dimension fractale
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 1
SP - 1
EP - 68
AB - Soit $F_0$ un difféomorphisme d’une surface possédant deux fers à cheval $\Lambda , \Lambda ^{\prime }$ tels que $W^s \Lambda $ et $W^u \Lambda ^{\prime }$ aient en un point $q$ une tangence quadratique isolée. Nous montrons que, si la somme des dimensions transverses de $W^s \Lambda $ et $W^u \Lambda ^{\prime }$ est strictement plus grande que 1, les difféomorphismes voisins de $F_0$ tels que $W^s \Lambda $ et $W^u \Lambda ^{\prime }$ soient stablement tangents au voisinage de $q$ forment une partie de densité inférieure strictement positive en $F_0$.
LA - fre
KW - homoclinic bifurcation; homoclinic tangency; horseshoe; fractal dimension
UR - http://eudml.org/doc/272127
ER -
References
top- [1] M. J. Hall, On the sum and product of continued fractions, Ann. of Math.48 (1947), 966–993. Zbl0030.02201MR22568
- [2] M. W. Hirsch, C. C. Pugh & M. Shub, Invariant manifolds, Lecture Notes in Math. 583, Springer, 1977. Zbl0355.58009MR501173
- [3] R. Kaufman, On Hausdorff dimension of projections, Mathematika15 (1968), 153–155. Zbl0165.37404MR248779
- [4] J. M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimensions, Proc. London Math. Soc.4 (1954), 257–302. Zbl0056.05504MR63439
- [5] C. G. Moreira, Stable intersections of Cantor sets and homoclinic bifurcations, Ann. Inst. H. Poincaré Anal. Non Linéaire13 (1996), 741–781. Zbl0865.58035MR1420497
- [6] C. G. Moreira & J.-C. Yoccoz, Stable intersections of regular Cantor sets with large Hausdorff dimensions, Ann. of Math.154 (2001), 45–96. Zbl1195.37015MR1847588
- [7] S. E. Newhouse, Nondensity of axiom on , in Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., 1970, 191–202. Zbl0206.25801MR277005
- [8] J. Palis & F. Takens, Hyperbolicity and the creation of homoclinic orbits, Ann. of Math.125 (1987), 337–374. Zbl0641.58029MR881272
- [9] J. Palis & F. Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Cambridge Studies in Advanced Math. 35, Cambridge Univ. Press, 1993. Zbl0790.58014MR1237641
- [10] J. Palis & J.-C. Yoccoz, Homoclinic tangencies for hyperbolic sets of large Hausdorff dimension, Acta Math.172 (1994), 91–136. Zbl0801.58035MR1263999
- [11] E. R. Pujals & M. Sambarino, Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. of Math.151 (2000), 961–1023. Zbl0959.37040MR1779562
- [12] D. Sullivan, Differentiable structures on fractal-like sets, determined by intrinsic scaling functions on dual Cantor sets, in The mathematical heritage of Hermann Weyl (Durham, NC, 1987), Proc. Sympos. Pure Math. 48, Amer. Math. Soc., 1988, 15–23. Zbl0665.58027MR974329
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.