Stable intersections of Cantor sets and homoclinic bifurcations

Carlos Gustavo T. de A. Moreira

Annales de l'I.H.P. Analyse non linéaire (1996)

  • Volume: 13, Issue: 6, page 741-781
  • ISSN: 0294-1449

How to cite

top

Moreira, Carlos Gustavo T. de A.. "Stable intersections of Cantor sets and homoclinic bifurcations." Annales de l'I.H.P. Analyse non linéaire 13.6 (1996): 741-781. <http://eudml.org/doc/78400>.

@article{Moreira1996,
author = {Moreira, Carlos Gustavo T. de A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Cantor sets; homoclinic bifurcation; stable intersection; hyperbolicity},
language = {eng},
number = {6},
pages = {741-781},
publisher = {Gauthier-Villars},
title = {Stable intersections of Cantor sets and homoclinic bifurcations},
url = {http://eudml.org/doc/78400},
volume = {13},
year = {1996},
}

TY - JOUR
AU - Moreira, Carlos Gustavo T. de A.
TI - Stable intersections of Cantor sets and homoclinic bifurcations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 6
SP - 741
EP - 781
LA - eng
KW - Cantor sets; homoclinic bifurcation; stable intersection; hyperbolicity
UR - http://eudml.org/doc/78400
ER -

References

top
  1. [BPV] R. Bamón, S. Plaza and J. Vera, On Central Cantor Sets with self-arithmetic difference of positive Lebesgue measure, to appear in J. London Math. Soc. Zbl0839.28002
  2. [H] M. Hall, On the sum and product of continued fractions, Annals of Math., Vol. 48, 1947, pp. 966-993. Zbl0030.02201MR22568
  3. [MO] P. Mendes and F. Oliveira, On the topological structure of the arithmetic sum of two Cantor sets, Nonlinearity, Vol. 7, 1994, pp. 329-343. Zbl0839.54027MR1267692
  4. [N1] S. Newhouse, Non density of Axiom A(a) on S2, Proc. A.M.S. Symp. Pure Math., Vol. 14, 1970, pp. 191-202. Zbl0206.25801MR277005
  5. [N2] S. Newhouse, Diffeomorphisms with infinitely many sinks, Topology, Vol. 13, 1974, pp. 9-18. Zbl0275.58016MR339291
  6. [N3] S. Newhouse, The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math. IHES, Vol. 50, 1979, pp. 101-151. Zbl0445.58022MR556584
  7. [P] J. Palis, Homoclinic bifurcations, sensitive chaotic dynamics and strange attractors, Dynamical Syst. and Related Topics, World Scientific, 1991, pp. 466-473. MR1164908
  8. [PT] J. Palis and F. Takens, Cycles and measure of bifurcation sets for two-dimensional diffeomorphisms, Invent. Math., Vol. 82, 1985, pp. 379-442. Zbl0579.58005MR811543
  9. [PT1] J. Palis and F. Takens, Hyperbolicity and the creation of homoclinic orbits, Annals of Math., Vol. 125, 1987, pp. 337-374. Zbl0641.58029MR881272
  10. [PT2] J. Palis and F. Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations: fractal dimensions and infinitely many attractors, Cambridge Univ. Press, 1992. Zbl0790.58014MR1237641
  11. [PY] J. Palis and J.C. Yoccoz, Homoclinic Tangencies for Hyperbolic sets of large Hausdorff Dimension Bifurcations, Acta Mathematica, Vol. 172, 1994, pp. 91-136. Zbl0801.58035MR1263999
  12. [S] A. Sannami, An example of a regular Cantor set whose difference set is a Cantor set with positive measure, Hokkaido Math. Journal, Vol. XXI (1), 1992, pp. 7-23. Zbl0787.58028MR1153749

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.