An arithmetic Riemann-Roch theorem for pointed stable curves

Gérard Freixas Montplet

Annales scientifiques de l'École Normale Supérieure (2009)

  • Volume: 42, Issue: 2, page 335-369
  • ISSN: 0012-9593

Abstract

top
Let ( 𝒪 , Σ , F ) be an arithmetic ring of Krull dimension at most 1, 𝒮 = Spec 𝒪 and ( π : 𝒳 𝒮 ; σ 1 , ... , σ n ) an n -pointed stable curve of genus g . Write 𝒰 = 𝒳 j σ j ( 𝒮 ) . The invertible sheaf ω 𝒳 / 𝒮 ( σ 1 + + σ n ) inherits a hermitian structure · hyp from the dual of the hyperbolic metric on the Riemann surface 𝒰 . In this article we prove an arithmetic Riemann-Roch type theorem that computes the arithmetic self-intersection of ω 𝒳 / 𝒮 ( σ 1 + ... + σ n ) hyp . The theorem is applied to modular curves X ( Γ ) , Γ = Γ 0 ( p ) or Γ 1 ( p ) , p 11 prime, with sections given by the cusps. We show Z ' ( Y ( Γ ) , 1 ) e a π b Γ 2 ( 1 / 2 ) c L ( 0 , Γ ) , with p 11 m o d 12 when Γ = Γ 0 ( p ) . Here Z ( Y ( Γ ) , s ) is the Selberg zeta function of the open modular curve Y ( Γ ) , a , b , c are rational numbers, Γ is a suitable Chow motive and means equality up to algebraic unit.

How to cite

top

Freixas Montplet, Gérard. "An arithmetic Riemann-Roch theorem for pointed stable curves." Annales scientifiques de l'École Normale Supérieure 42.2 (2009): 335-369. <http://eudml.org/doc/272144>.

@article{FreixasMontplet2009,
abstract = {Let $(\mathcal \{O\}, \Sigma , F_\{\infty \})$ be an arithmetic ring of Krull dimension at most 1, $\mathcal \{S\}=\mathrm \{Spec\}\mathcal \{O\}$ and $(\pi :\mathcal \{X\}\rightarrow \mathcal \{S\}; \sigma _\{1\},\ldots ,\sigma _\{n\})$ an $n$-pointed stable curve of genus $g$. Write $\mathcal \{U\}=\mathcal \{X\}\setminus \cup _\{j\}\sigma _\{j\}(\mathcal \{S\})$. The invertible sheaf $\omega _\{\mathcal \{X\}/\mathcal \{S\}\}(\sigma _\{1\}+\cdots +\sigma _\{n\})$ inherits a hermitian structure $\Vert \cdot \Vert _\{\mathrm \{hyp\}\}$ from the dual of the hyperbolic metric on the Riemann surface $\mathcal \{U\}_\{\infty \}$. In this article we prove an arithmetic Riemann-Roch type theorem that computes the arithmetic self-intersection of $\omega _\{\mathcal \{X\}/\mathcal \{S\}\}(\sigma _\{1\}+\ldots +\sigma _\{n\})_\{\mathrm \{hyp\}\}$. The theorem is applied to modular curves $X(\Gamma )$, $\Gamma =\Gamma _\{0\}(p)$ or $\Gamma _\{1\}(p)$, $p\ge 11$ prime, with sections given by the cusps. We show $Z^\{\prime \}(Y(\Gamma ),1)\sim e^\{a\}\pi ^\{b\}\Gamma _\{2\}(1/2)^\{c\}L(0,\mathcal \{M\}_\{\Gamma \})$, with $p\equiv 11~mod \;12$ when $\Gamma =\Gamma _\{0\}(p)$. Here $Z(Y(\Gamma ),s)$ is the Selberg zeta function of the open modular curve $Y(\Gamma )$, $a,b,c$ are rational numbers, $\mathcal \{M\}_\{\Gamma \}$ is a suitable Chow motive and $\sim $ means equality up to algebraic unit.},
author = {Freixas Montplet, Gérard},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {arithmetic Riemann-Roch theorem; pointed stable curves; hyperbolic metric; Selberg zeta function},
language = {eng},
number = {2},
pages = {335-369},
publisher = {Société mathématique de France},
title = {An arithmetic Riemann-Roch theorem for pointed stable curves},
url = {http://eudml.org/doc/272144},
volume = {42},
year = {2009},
}

TY - JOUR
AU - Freixas Montplet, Gérard
TI - An arithmetic Riemann-Roch theorem for pointed stable curves
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 2
SP - 335
EP - 369
AB - Let $(\mathcal {O}, \Sigma , F_{\infty })$ be an arithmetic ring of Krull dimension at most 1, $\mathcal {S}=\mathrm {Spec}\mathcal {O}$ and $(\pi :\mathcal {X}\rightarrow \mathcal {S}; \sigma _{1},\ldots ,\sigma _{n})$ an $n$-pointed stable curve of genus $g$. Write $\mathcal {U}=\mathcal {X}\setminus \cup _{j}\sigma _{j}(\mathcal {S})$. The invertible sheaf $\omega _{\mathcal {X}/\mathcal {S}}(\sigma _{1}+\cdots +\sigma _{n})$ inherits a hermitian structure $\Vert \cdot \Vert _{\mathrm {hyp}}$ from the dual of the hyperbolic metric on the Riemann surface $\mathcal {U}_{\infty }$. In this article we prove an arithmetic Riemann-Roch type theorem that computes the arithmetic self-intersection of $\omega _{\mathcal {X}/\mathcal {S}}(\sigma _{1}+\ldots +\sigma _{n})_{\mathrm {hyp}}$. The theorem is applied to modular curves $X(\Gamma )$, $\Gamma =\Gamma _{0}(p)$ or $\Gamma _{1}(p)$, $p\ge 11$ prime, with sections given by the cusps. We show $Z^{\prime }(Y(\Gamma ),1)\sim e^{a}\pi ^{b}\Gamma _{2}(1/2)^{c}L(0,\mathcal {M}_{\Gamma })$, with $p\equiv 11~mod \;12$ when $\Gamma =\Gamma _{0}(p)$. Here $Z(Y(\Gamma ),s)$ is the Selberg zeta function of the open modular curve $Y(\Gamma )$, $a,b,c$ are rational numbers, $\mathcal {M}_{\Gamma }$ is a suitable Chow motive and $\sim $ means equality up to algebraic unit.
LA - eng
KW - arithmetic Riemann-Roch theorem; pointed stable curves; hyperbolic metric; Selberg zeta function
UR - http://eudml.org/doc/272144
ER -

References

top
  1. [1] E. Arbarello & M. Cornalba, Calculating cohomology groups of moduli spaces of curves via algebraic geometry, Publ. Math. I.H.É.S. 88 (1998), 97–127. Zbl0991.14012MR1733327
  2. [2] M. Artin, A. Grothendieck & J.-L. Verdier, Séminaire de Géométrie Algébrique du Bois Marie 1963/64, tome 3, Lect. Notes Math. 305 (1973). Zbl0269.14010
  3. [3] E. W. Barnes, The theory of the G -function, Q. J. Math. 31 (1900), 264–314. Zbl30.0389.02JFM30.0389.02
  4. [4] J.-M. Bismut & J.-B. Bost, Fibrés déterminants, métriques de Quillen et dégénérescence des courbes, Acta Math.165 (1990), 1–103. Zbl0709.32019MR1064578
  5. [5] J.-B. Bost, Intersection theory on arithmetic surfaces and L 1 2 metrics, letter dated March, 1998. 
  6. [6] M. Burger, Small eigenvalues of Riemann surfaces and graphs, Math. Z.205 (1990), 395–420. Zbl0729.58050MR1082864
  7. [7] J. I. Burgos Gil, J. Kramer & U. Kühn, Arithmetic characteristic classes of automorphic vector bundles, Doc. Math.10 (2005), 619–716. Zbl1080.14028MR2218402
  8. [8] J. I. Burgos Gil, J. Kramer & U. Kühn, Cohomological arithmetic Chow rings, J. Inst. Math. Jussieu6 (2007), 1–172. Zbl1115.14013MR2285241
  9. [9] H. Carayol, Sur les représentations l -adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup.19 (1986), 409–468. Zbl0616.10025MR870690
  10. [10] H. Darmon, F. Diamond & R. Taylor, Fermat’s last theorem, in Elliptic curves, modular forms & Fermat’s last theorem (Hong Kong, 1993), Int. Press, Cambridge, MA, 1997. Zbl0877.11035MR1605752
  11. [11] P. Deligne, Formes modulaires et représentations -adiques, Sém. Bourbaki, exp. no 355, Lect. Notes in Math. 179 (1969), 139–172. Zbl0206.49901MR3077124
  12. [12] P. Deligne, Le déterminant de la cohomologie, in Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), Contemp. Math. 67, Amer. Math. Soc., 1987, 93–177. Zbl0629.14008MR902592
  13. [13] P. Deligne & D. Mumford, The irreducibility of the space of curves of given genus, Publ. Math. I.H.É.S. 36 (1969), 75–109. Zbl0181.48803MR262240
  14. [14] P. Deligne & M. Rapoport, Les schémas de modules de courbes elliptiques, in Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Math. 349, Springer, 1973, 143–316. Zbl0281.14010MR337993
  15. [15] E. D’Hoker & D. H. Phong, On determinants of Laplacians on Riemann surfaces, Comm. Math. Phys.104 (1986), 537–545. Zbl0599.30073MR841668
  16. [16] T. Ebel, Equivariant analytic torsion on hyperbolic Riemann surfaces and the arithmetic Lefschetz trace of an Atkin-Lehner involution on a compact Shimura curve, Thèse, Heinrich-Heine Universität, Düsseldorf, 2006. 
  17. [17] B. Edixhoven, On Néron models, divisors and modular curves, J. Ramanujan Math. Soc.13 (1998), 157–194. Zbl0931.11021MR1666374
  18. [18] R. Elkik, Fibrés d’intersections et intégrales de classes de Chern, Ann. Sci. École Norm. Sup.22 (1989), 195–226. Zbl0701.14003MR1005159
  19. [19] G. Freixas i Montplet, Généralisations de la théorie de l’intersection arithmétique, Thèse, 2007, Université d’Orsay. 
  20. [20] G. Freixas i Montplet, Heights and metrics with logarithmic singularities, J. reine angew. Math. 627 (2009), 97–153. Zbl1195.14033MR2494930
  21. [21] D. Fried, Analytic torsion and closed geodesics on hyperbolic manifolds, Invent. Math.84 (1986), 523–540. Zbl0621.53035MR837526
  22. [22] H. Gillet & C. Soulé, Arithmetic intersection theory, Publ. Math. I.H.É.S. 72 (1990), 93–174. Zbl0741.14012MR1087394
  23. [23] H. Gillet & C. Soulé, Characteristic classes for algebraic vector bundles with Hermitian metric. I and II, Ann. of Math. 131 (1990), 163–203 and 205–238. Zbl0715.14006MR1038362
  24. [24] H. Gillet & C. Soulé, An arithmetic Riemann-Roch theorem, Invent. Math.110 (1992), 473–543. Zbl0777.14008MR1189489
  25. [25] T. Hahn, Thèse, Humboldt-Universität zu Berlin, in preparation. Zbl0191.38001
  26. [26] Y. Hashimoto, Arithmetic expressions of Selberg’s zeta functions for congruence subgroups, J. Number Theory122 (2007), 324–335. Zbl1163.11060MR2292258
  27. [27] D. A. Hejhal, The Selberg trace formula for PSL 2 ( ) , vol. I, II, Lect. Notes in Math. 548 (1976), 1001 (1983). Zbl0543.10020MR711197
  28. [28] H. Hida, Congruence of cusp forms and special values of their zeta functions, Invent. Math.63 (1981), 225–261. Zbl0459.10018MR610538
  29. [29] H. Iwaniec, Spectral methods of automorphic forms, second éd., Graduate Studies in Mathematics 53, Amer. Math. Soc., 2002. Zbl1006.11024MR1942691
  30. [30] L. Ji, The asymptotic behavior of Green’s functions for degenerating hyperbolic surfaces, Math. Z.212 (1993), 375–394. Zbl0792.53040MR1207299
  31. [31] J. Jorgenson & R. Lundelius, Continuity of relative hyperbolic spectral theory through metric degeneration, Duke Math. J.84 (1996), 47–81. Zbl0872.58062MR1394748
  32. [32] J. Jorgenson & R. Lundelius, A regularized heat trace for hyperbolic Riemann surfaces of finite volume, Comment. Math. Helv.72 (1997), 636–659. Zbl0902.58040MR1600164
  33. [33] N. M. Katz & B. Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies 108, Princeton University Press, 1985. Zbl0576.14026MR772569
  34. [34] S. Keel, Intersection theory of moduli space of stable n -pointed curves of genus zero, Trans. Amer. Math. Soc.330 (1992), 545–574. Zbl0768.14002MR1034665
  35. [35] F. F. Knudsen, The projectivity of the moduli space of stable curves. II, III, Math. Scand. 52 (1983), 161–212. Zbl0544.14020MR702953
  36. [36] K. Köhler & D. Roessler, A fixed point formula of Lefschetz type in Arakelov geometry. I. Statement and proof, Invent. Math. 145 (2001), 333–396. Zbl0999.14002MR1872550
  37. [37] U. Kühn, Generalized arithmetic intersection numbers, J. reine angew. Math. 534 (2001), 209–236. Zbl1084.14028MR1831639
  38. [38] G. Laumon & L. Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 39, Springer, 2000. Zbl0945.14005MR1771927
  39. [39] H. Masur, Extension of the Weil-Petersson metric to the boundary of Teichmuller space, Duke Math. J.43 (1976), 623–635. Zbl0358.32017MR417456
  40. [40] B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. I.H.É.S. 47 (1977), 33–186. Zbl0394.14008MR488287
  41. [41] L. Moret-Bailly, La formule de Noether pour les surfaces arithmétiques, Invent. Math.98 (1989), 491–498. Zbl0727.14014MR1022303
  42. [42] D. Mumford, Stability of projective varieties, Enseignement Math.23 (1977), 39–110. Zbl0363.14003MR450272
  43. [43] D. Mumford, Towards an enumerative geometry of the moduli space of curves, in Arithmetic and geometry, Vol. II, Progr. Math. 36, Birkhäuser, 1983, 271–328. Zbl0554.14008MR717614
  44. [44] D. B. Ray & I. M. Singer, Analytic torsion for complex manifolds, Ann. of Math.98 (1973), 154–177. Zbl0267.32014MR383463
  45. [45] D. E. Rohrlich, A modular version of Jensen’s formula, Math. Proc. Cambridge Philos. Soc.95 (1984), 15–20. Zbl0538.10023MR727075
  46. [46] P. Sarnak, Class numbers of indefinite binary quadratic forms, J. Number Theory15 (1982), 229–247. Zbl0499.10021MR675187
  47. [47] P. Sarnak, Determinants of Laplacians, Comm. Math. Phys.110 (1987), 113–120. Zbl0618.10023MR885573
  48. [48] R. Schoen, S. A. Wolpert & S. T. Yau, Geometric bounds on the low eigenvalues of a compact surface, in Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., 1980, 279–285. Zbl0446.58018MR573440
  49. [49] A. J. Scholl, Motives for modular forms, Invent. Math.100 (1990), 419–430. Zbl0760.14002MR1047142
  50. [50] M. Schulze, On the resolvent of the Laplacian on functions for degenerating surfaces of finite geometry, J. Funct. Anal.236 (2006), 120–160. Zbl1094.58012MR2227131
  51. [51] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo, 1971. Zbl0221.10029MR314766
  52. [52] G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc.31 (1975), 79–98. Zbl0311.10029MR382176
  53. [53] C. Soulé, Régulateurs, Séminaire Bourbaki, vol. 1984/85, exp. no 644, Astérisque 133-134 (1986), 237–253. Zbl0617.14008
  54. [54] J. Sturm, Special values of zeta functions, and Eisenstein series of half integral weight, Amer. J. Math.102 (1980), 219–240. Zbl0433.10015MR564472
  55. [55] L. A. Takhtajan & P. G. Zograf, The Selberg zeta function and a new Kähler metric on the moduli space of punctured Riemann surfaces, J. Geom. Phys.5 (1988), 551–570. Zbl0739.30032MR1075722
  56. [56] L. A. Takhtajan & P. G. Zograf, A local index theorem for families of ¯ -operators on punctured Riemann surfaces and a new Kähler metric on their moduli spaces, Comm. Math. Phys.137 (1991), 399–426. Zbl0725.58043MR1101693
  57. [57] E. Ullmo, Hauteur de Faltings de quotients de J 0 ( N ) , discriminants d’algèbres de Hecke et congruences entre formes modulaires, Amer. J. Math.122 (2000), 83–115. Zbl0991.11033MR1737258
  58. [58] C. Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés 10, Soc. Math. France, 2002. Zbl1032.14001MR1988456
  59. [59] A. Voros, Spectral functions, special functions and the Selberg zeta function, Comm. Math. Phys.110 (1987), 439–465. Zbl0631.10025MR891947
  60. [60] L. Weng, Ω -admissible theory. II. Deligne pairings over moduli spaces of punctured Riemann surfaces, Math. Ann. 320 (2001), 239–283. Zbl1036.14013MR1839763
  61. [61] S. A. Wolpert, Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces, Comm. Math. Phys.112 (1987), 283–315. Zbl0629.58029MR905169
  62. [62] S. A. Wolpert, The hyperbolic metric and the geometry of the universal curve, J. Differential Geom.31 (1990), 417–472. Zbl0698.53002MR1037410
  63. [63] S. A. Wolpert, Cusps and the family hyperbolic metric, Duke Math. J.138 (2007), 423–443. Zbl1144.14029MR2322683

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.