An arithmetic Riemann-Roch theorem for pointed stable curves
Annales scientifiques de l'École Normale Supérieure (2009)
- Volume: 42, Issue: 2, page 335-369
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topFreixas Montplet, Gérard. "An arithmetic Riemann-Roch theorem for pointed stable curves." Annales scientifiques de l'École Normale Supérieure 42.2 (2009): 335-369. <http://eudml.org/doc/272144>.
@article{FreixasMontplet2009,
abstract = {Let $(\mathcal \{O\}, \Sigma , F_\{\infty \})$ be an arithmetic ring of Krull dimension at most 1, $\mathcal \{S\}=\mathrm \{Spec\}\mathcal \{O\}$ and $(\pi :\mathcal \{X\}\rightarrow \mathcal \{S\}; \sigma _\{1\},\ldots ,\sigma _\{n\})$ an $n$-pointed stable curve of genus $g$. Write $\mathcal \{U\}=\mathcal \{X\}\setminus \cup _\{j\}\sigma _\{j\}(\mathcal \{S\})$. The invertible sheaf $\omega _\{\mathcal \{X\}/\mathcal \{S\}\}(\sigma _\{1\}+\cdots +\sigma _\{n\})$ inherits a hermitian structure $\Vert \cdot \Vert _\{\mathrm \{hyp\}\}$ from the dual of the hyperbolic metric on the Riemann surface $\mathcal \{U\}_\{\infty \}$. In this article we prove an arithmetic Riemann-Roch type theorem that computes the arithmetic self-intersection of $\omega _\{\mathcal \{X\}/\mathcal \{S\}\}(\sigma _\{1\}+\ldots +\sigma _\{n\})_\{\mathrm \{hyp\}\}$. The theorem is applied to modular curves $X(\Gamma )$, $\Gamma =\Gamma _\{0\}(p)$ or $\Gamma _\{1\}(p)$, $p\ge 11$ prime, with sections given by the cusps. We show $Z^\{\prime \}(Y(\Gamma ),1)\sim e^\{a\}\pi ^\{b\}\Gamma _\{2\}(1/2)^\{c\}L(0,\mathcal \{M\}_\{\Gamma \})$, with $p\equiv 11~mod \;12$ when $\Gamma =\Gamma _\{0\}(p)$. Here $Z(Y(\Gamma ),s)$ is the Selberg zeta function of the open modular curve $Y(\Gamma )$, $a,b,c$ are rational numbers, $\mathcal \{M\}_\{\Gamma \}$ is a suitable Chow motive and $\sim $ means equality up to algebraic unit.},
author = {Freixas Montplet, Gérard},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {arithmetic Riemann-Roch theorem; pointed stable curves; hyperbolic metric; Selberg zeta function},
language = {eng},
number = {2},
pages = {335-369},
publisher = {Société mathématique de France},
title = {An arithmetic Riemann-Roch theorem for pointed stable curves},
url = {http://eudml.org/doc/272144},
volume = {42},
year = {2009},
}
TY - JOUR
AU - Freixas Montplet, Gérard
TI - An arithmetic Riemann-Roch theorem for pointed stable curves
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 2
SP - 335
EP - 369
AB - Let $(\mathcal {O}, \Sigma , F_{\infty })$ be an arithmetic ring of Krull dimension at most 1, $\mathcal {S}=\mathrm {Spec}\mathcal {O}$ and $(\pi :\mathcal {X}\rightarrow \mathcal {S}; \sigma _{1},\ldots ,\sigma _{n})$ an $n$-pointed stable curve of genus $g$. Write $\mathcal {U}=\mathcal {X}\setminus \cup _{j}\sigma _{j}(\mathcal {S})$. The invertible sheaf $\omega _{\mathcal {X}/\mathcal {S}}(\sigma _{1}+\cdots +\sigma _{n})$ inherits a hermitian structure $\Vert \cdot \Vert _{\mathrm {hyp}}$ from the dual of the hyperbolic metric on the Riemann surface $\mathcal {U}_{\infty }$. In this article we prove an arithmetic Riemann-Roch type theorem that computes the arithmetic self-intersection of $\omega _{\mathcal {X}/\mathcal {S}}(\sigma _{1}+\ldots +\sigma _{n})_{\mathrm {hyp}}$. The theorem is applied to modular curves $X(\Gamma )$, $\Gamma =\Gamma _{0}(p)$ or $\Gamma _{1}(p)$, $p\ge 11$ prime, with sections given by the cusps. We show $Z^{\prime }(Y(\Gamma ),1)\sim e^{a}\pi ^{b}\Gamma _{2}(1/2)^{c}L(0,\mathcal {M}_{\Gamma })$, with $p\equiv 11~mod \;12$ when $\Gamma =\Gamma _{0}(p)$. Here $Z(Y(\Gamma ),s)$ is the Selberg zeta function of the open modular curve $Y(\Gamma )$, $a,b,c$ are rational numbers, $\mathcal {M}_{\Gamma }$ is a suitable Chow motive and $\sim $ means equality up to algebraic unit.
LA - eng
KW - arithmetic Riemann-Roch theorem; pointed stable curves; hyperbolic metric; Selberg zeta function
UR - http://eudml.org/doc/272144
ER -
References
top- [1] E. Arbarello & M. Cornalba, Calculating cohomology groups of moduli spaces of curves via algebraic geometry, Publ. Math. I.H.É.S. 88 (1998), 97–127. Zbl0991.14012MR1733327
- [2] M. Artin, A. Grothendieck & J.-L. Verdier, Séminaire de Géométrie Algébrique du Bois Marie 1963/64, tome 3, Lect. Notes Math. 305 (1973). Zbl0269.14010
- [3] E. W. Barnes, The theory of the -function, Q. J. Math. 31 (1900), 264–314. Zbl30.0389.02JFM30.0389.02
- [4] J.-M. Bismut & J.-B. Bost, Fibrés déterminants, métriques de Quillen et dégénérescence des courbes, Acta Math.165 (1990), 1–103. Zbl0709.32019MR1064578
- [5] J.-B. Bost, Intersection theory on arithmetic surfaces and metrics, letter dated March, 1998.
- [6] M. Burger, Small eigenvalues of Riemann surfaces and graphs, Math. Z.205 (1990), 395–420. Zbl0729.58050MR1082864
- [7] J. I. Burgos Gil, J. Kramer & U. Kühn, Arithmetic characteristic classes of automorphic vector bundles, Doc. Math.10 (2005), 619–716. Zbl1080.14028MR2218402
- [8] J. I. Burgos Gil, J. Kramer & U. Kühn, Cohomological arithmetic Chow rings, J. Inst. Math. Jussieu6 (2007), 1–172. Zbl1115.14013MR2285241
- [9] H. Carayol, Sur les représentations -adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup.19 (1986), 409–468. Zbl0616.10025MR870690
- [10] H. Darmon, F. Diamond & R. Taylor, Fermat’s last theorem, in Elliptic curves, modular forms & Fermat’s last theorem (Hong Kong, 1993), Int. Press, Cambridge, MA, 1997. Zbl0877.11035MR1605752
- [11] P. Deligne, Formes modulaires et représentations -adiques, Sém. Bourbaki, exp. no 355, Lect. Notes in Math. 179 (1969), 139–172. Zbl0206.49901MR3077124
- [12] P. Deligne, Le déterminant de la cohomologie, in Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), Contemp. Math. 67, Amer. Math. Soc., 1987, 93–177. Zbl0629.14008MR902592
- [13] P. Deligne & D. Mumford, The irreducibility of the space of curves of given genus, Publ. Math. I.H.É.S. 36 (1969), 75–109. Zbl0181.48803MR262240
- [14] P. Deligne & M. Rapoport, Les schémas de modules de courbes elliptiques, in Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Math. 349, Springer, 1973, 143–316. Zbl0281.14010MR337993
- [15] E. D’Hoker & D. H. Phong, On determinants of Laplacians on Riemann surfaces, Comm. Math. Phys.104 (1986), 537–545. Zbl0599.30073MR841668
- [16] T. Ebel, Equivariant analytic torsion on hyperbolic Riemann surfaces and the arithmetic Lefschetz trace of an Atkin-Lehner involution on a compact Shimura curve, Thèse, Heinrich-Heine Universität, Düsseldorf, 2006.
- [17] B. Edixhoven, On Néron models, divisors and modular curves, J. Ramanujan Math. Soc.13 (1998), 157–194. Zbl0931.11021MR1666374
- [18] R. Elkik, Fibrés d’intersections et intégrales de classes de Chern, Ann. Sci. École Norm. Sup.22 (1989), 195–226. Zbl0701.14003MR1005159
- [19] G. Freixas i Montplet, Généralisations de la théorie de l’intersection arithmétique, Thèse, 2007, Université d’Orsay.
- [20] G. Freixas i Montplet, Heights and metrics with logarithmic singularities, J. reine angew. Math. 627 (2009), 97–153. Zbl1195.14033MR2494930
- [21] D. Fried, Analytic torsion and closed geodesics on hyperbolic manifolds, Invent. Math.84 (1986), 523–540. Zbl0621.53035MR837526
- [22] H. Gillet & C. Soulé, Arithmetic intersection theory, Publ. Math. I.H.É.S. 72 (1990), 93–174. Zbl0741.14012MR1087394
- [23] H. Gillet & C. Soulé, Characteristic classes for algebraic vector bundles with Hermitian metric. I and II, Ann. of Math. 131 (1990), 163–203 and 205–238. Zbl0715.14006MR1038362
- [24] H. Gillet & C. Soulé, An arithmetic Riemann-Roch theorem, Invent. Math.110 (1992), 473–543. Zbl0777.14008MR1189489
- [25] T. Hahn, Thèse, Humboldt-Universität zu Berlin, in preparation. Zbl0191.38001
- [26] Y. Hashimoto, Arithmetic expressions of Selberg’s zeta functions for congruence subgroups, J. Number Theory122 (2007), 324–335. Zbl1163.11060MR2292258
- [27] D. A. Hejhal, The Selberg trace formula for , vol. I, II, Lect. Notes in Math. 548 (1976), 1001 (1983). Zbl0543.10020MR711197
- [28] H. Hida, Congruence of cusp forms and special values of their zeta functions, Invent. Math.63 (1981), 225–261. Zbl0459.10018MR610538
- [29] H. Iwaniec, Spectral methods of automorphic forms, second éd., Graduate Studies in Mathematics 53, Amer. Math. Soc., 2002. Zbl1006.11024MR1942691
- [30] L. Ji, The asymptotic behavior of Green’s functions for degenerating hyperbolic surfaces, Math. Z.212 (1993), 375–394. Zbl0792.53040MR1207299
- [31] J. Jorgenson & R. Lundelius, Continuity of relative hyperbolic spectral theory through metric degeneration, Duke Math. J.84 (1996), 47–81. Zbl0872.58062MR1394748
- [32] J. Jorgenson & R. Lundelius, A regularized heat trace for hyperbolic Riemann surfaces of finite volume, Comment. Math. Helv.72 (1997), 636–659. Zbl0902.58040MR1600164
- [33] N. M. Katz & B. Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies 108, Princeton University Press, 1985. Zbl0576.14026MR772569
- [34] S. Keel, Intersection theory of moduli space of stable -pointed curves of genus zero, Trans. Amer. Math. Soc.330 (1992), 545–574. Zbl0768.14002MR1034665
- [35] F. F. Knudsen, The projectivity of the moduli space of stable curves. II, III, Math. Scand. 52 (1983), 161–212. Zbl0544.14020MR702953
- [36] K. Köhler & D. Roessler, A fixed point formula of Lefschetz type in Arakelov geometry. I. Statement and proof, Invent. Math. 145 (2001), 333–396. Zbl0999.14002MR1872550
- [37] U. Kühn, Generalized arithmetic intersection numbers, J. reine angew. Math. 534 (2001), 209–236. Zbl1084.14028MR1831639
- [38] G. Laumon & L. Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 39, Springer, 2000. Zbl0945.14005MR1771927
- [39] H. Masur, Extension of the Weil-Petersson metric to the boundary of Teichmuller space, Duke Math. J.43 (1976), 623–635. Zbl0358.32017MR417456
- [40] B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. I.H.É.S. 47 (1977), 33–186. Zbl0394.14008MR488287
- [41] L. Moret-Bailly, La formule de Noether pour les surfaces arithmétiques, Invent. Math.98 (1989), 491–498. Zbl0727.14014MR1022303
- [42] D. Mumford, Stability of projective varieties, Enseignement Math.23 (1977), 39–110. Zbl0363.14003MR450272
- [43] D. Mumford, Towards an enumerative geometry of the moduli space of curves, in Arithmetic and geometry, Vol. II, Progr. Math. 36, Birkhäuser, 1983, 271–328. Zbl0554.14008MR717614
- [44] D. B. Ray & I. M. Singer, Analytic torsion for complex manifolds, Ann. of Math.98 (1973), 154–177. Zbl0267.32014MR383463
- [45] D. E. Rohrlich, A modular version of Jensen’s formula, Math. Proc. Cambridge Philos. Soc.95 (1984), 15–20. Zbl0538.10023MR727075
- [46] P. Sarnak, Class numbers of indefinite binary quadratic forms, J. Number Theory15 (1982), 229–247. Zbl0499.10021MR675187
- [47] P. Sarnak, Determinants of Laplacians, Comm. Math. Phys.110 (1987), 113–120. Zbl0618.10023MR885573
- [48] R. Schoen, S. A. Wolpert & S. T. Yau, Geometric bounds on the low eigenvalues of a compact surface, in Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., 1980, 279–285. Zbl0446.58018MR573440
- [49] A. J. Scholl, Motives for modular forms, Invent. Math.100 (1990), 419–430. Zbl0760.14002MR1047142
- [50] M. Schulze, On the resolvent of the Laplacian on functions for degenerating surfaces of finite geometry, J. Funct. Anal.236 (2006), 120–160. Zbl1094.58012MR2227131
- [51] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo, 1971. Zbl0221.10029MR314766
- [52] G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc.31 (1975), 79–98. Zbl0311.10029MR382176
- [53] C. Soulé, Régulateurs, Séminaire Bourbaki, vol. 1984/85, exp. no 644, Astérisque 133-134 (1986), 237–253. Zbl0617.14008
- [54] J. Sturm, Special values of zeta functions, and Eisenstein series of half integral weight, Amer. J. Math.102 (1980), 219–240. Zbl0433.10015MR564472
- [55] L. A. Takhtajan & P. G. Zograf, The Selberg zeta function and a new Kähler metric on the moduli space of punctured Riemann surfaces, J. Geom. Phys.5 (1988), 551–570. Zbl0739.30032MR1075722
- [56] L. A. Takhtajan & P. G. Zograf, A local index theorem for families of -operators on punctured Riemann surfaces and a new Kähler metric on their moduli spaces, Comm. Math. Phys.137 (1991), 399–426. Zbl0725.58043MR1101693
- [57] E. Ullmo, Hauteur de Faltings de quotients de , discriminants d’algèbres de Hecke et congruences entre formes modulaires, Amer. J. Math.122 (2000), 83–115. Zbl0991.11033MR1737258
- [58] C. Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés 10, Soc. Math. France, 2002. Zbl1032.14001MR1988456
- [59] A. Voros, Spectral functions, special functions and the Selberg zeta function, Comm. Math. Phys.110 (1987), 439–465. Zbl0631.10025MR891947
- [60] L. Weng, -admissible theory. II. Deligne pairings over moduli spaces of punctured Riemann surfaces, Math. Ann. 320 (2001), 239–283. Zbl1036.14013MR1839763
- [61] S. A. Wolpert, Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces, Comm. Math. Phys.112 (1987), 283–315. Zbl0629.58029MR905169
- [62] S. A. Wolpert, The hyperbolic metric and the geometry of the universal curve, J. Differential Geom.31 (1990), 417–472. Zbl0698.53002MR1037410
- [63] S. A. Wolpert, Cusps and the family hyperbolic metric, Duke Math. J.138 (2007), 423–443. Zbl1144.14029MR2322683
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.