Codimension one holomorphic foliations with trivial canonical class

Frédéric Touzet

Annales scientifiques de l'École Normale Supérieure (2008)

  • Volume: 41, Issue: 4, page 657-670
  • ISSN: 0012-9593

Abstract

top
Nous décrivons les variétés kählériennes compactes M de dimension complexe n dont le fibré tangent admet un sous-fibré holomorphe intégrable de rang n - 1 dont le fibré déterminant D é t est à première classe de Chern nulle. Ce résultat peut en quelque sorte être considéré comme un avatar feuilleté du théorème de Bogomolov concernant les variétés kählériennes à fibré canonique numériquement trivial.

How to cite

top

Touzet, Frédéric. "Feuilletages holomorphes de codimension un dont la classe canonique est triviale." Annales scientifiques de l'École Normale Supérieure 41.4 (2008): 657-670. <http://eudml.org/doc/272162>.

@article{Touzet2008,
abstract = {We give a description of Kähler manifolds $M$ equipped with an integrable subbundle $\mathcal \{F\}$ of $TM$ of rank $n-1$ ($n=\mathrm \{dim\}\ M$) under the assumption that the line bundle $\mathrm \{Dét\}\ \{\mathcal \{F\}\}$ is numerically trivial. This is a sort of foliated version of Bogomolov’s theorem concerning Kähler manifolds with trivial canonical class.},
author = {Touzet, Frédéric},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {holomorphic foliatios; canonical class of a codimension 1 foliation; compact Kähler manifolds},
language = {fre},
number = {4},
pages = {657-670},
publisher = {Société mathématique de France},
title = {Feuilletages holomorphes de codimension un dont la classe canonique est triviale},
url = {http://eudml.org/doc/272162},
volume = {41},
year = {2008},
}

TY - JOUR
AU - Touzet, Frédéric
TI - Feuilletages holomorphes de codimension un dont la classe canonique est triviale
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 4
SP - 657
EP - 670
AB - We give a description of Kähler manifolds $M$ equipped with an integrable subbundle $\mathcal {F}$ of $TM$ of rank $n-1$ ($n=\mathrm {dim}\ M$) under the assumption that the line bundle $\mathrm {Dét}\ {\mathcal {F}}$ is numerically trivial. This is a sort of foliated version of Bogomolov’s theorem concerning Kähler manifolds with trivial canonical class.
LA - fre
KW - holomorphic foliatios; canonical class of a codimension 1 foliation; compact Kähler manifolds
UR - http://eudml.org/doc/272162
ER -

References

top
  1. [1] A. Beauville, Variétés kähleriennes dont la première classe de Chern est nulle, J. Diff. Geom.18 (1983), 755–782. Zbl0537.53056MR730926
  2. [2] F. A. Bogomolov, Kähler manifolds with trivial canonical class, Izv. Akad. Nauk SSSR Ser. Mat.38 (1974), 11–21. Zbl0292.32020MR338459
  3. [3] M. Brunella, Feuilletages holomorphes sur les surfaces complexes compactes, Ann. Sci. École Norm. Sup.30 (1997), 569–594. Zbl0893.32019MR1474805
  4. [4] M. Brunella, Plurisubharmonic variation of the leafwise Poincaré metric, Internat. J. Math.14 (2003), 139–151. Zbl1052.32027MR1966769
  5. [5] M. Brunella, A positivity property for foliations on compact Kähler manifolds, Internat. J. Math.17 (2006), 35–43. Zbl1097.37041MR2204838
  6. [6] M. Brunella, J. V. Pereira & F. Touzet, Kähler manifolds with split tangent bundle, Bull. Soc. Math. France134 (2006), 241–252. Zbl1187.32018
  7. [7] J. Cheeger & D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Diff. Geom. 6 (1971/72), 119–128. Zbl0223.53033
  8. [8] M. Kellum, Uniformly quasi-isometric foliations, Ergodic Theory Dynam. Systems13 (1993), 101–122. Zbl0784.58060MR1213081
  9. [9] S. Kobayashi & K. Nomizu, Foundations of differential geometry. Vol. II, John Wiley & Sons Inc., 1996. Zbl0175.48504
  10. [10] S. Kobayashi & H. Wu, Complex differential geometry, DMV Seminar 3, Birkhäuser, 1987. 
  11. [11] F. Loray & J. C. Rebelo, Minimal, rigid foliations by curves on n , J. Eur. Math. Soc.5 (2003), 147–201. Zbl1021.37030
  12. [12] J. Martinet & J.-P. Ramis, Classification analytique des équations différentielles non linéaires résonnantes du premier ordre, Ann. Sci. École Norm. Sup.16 (1983), 571–621. Zbl0534.34011
  13. [13] M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer, 1972. Zbl0254.22005MR507234
  14. [14] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), 339–411. Zbl0369.53059MR480350

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.