Kähler manifolds with split tangent bundle
Marco Brunella; Jorge Vitório Pereira; Frédéric Touzet
Bulletin de la Société Mathématique de France (2006)
- Volume: 134, Issue: 2, page 241-252
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L. Alessandrini & G. Bassanelli – « Plurisubharmonic currents and their extension across analytic subsets », Forum Math.5 (1993), p. 577–602. Zbl0784.32014MR1242890
- [2] A. Beauville – « Complex manifolds with split tangent bundle », Complex analysis and algebraic geometry, de Gruyter, Berlin, 2000, p. 61–70. Zbl1001.32010MR1760872
- [3] F. Bogomolov & M. McQuillan – « Rational curves on foliated varieties », Preprint IHÉS (2001).
- [4] M. Brunella – « Feuilletages holomorphes sur les surfaces complexes compactes », Ann. Sci. École Norm. Sup.30 (1997), p. 569–594. Zbl0893.32019MR1474805
- [5] —, « Plurisubharmonic variation of the leafwise Poincaré metric », Int. J. Math.14 (2003), p. 139–151. Zbl1052.32027MR1966769
- [6] —, « Some remarks on parabolic foliations », Contemp. Math.389 (2005), p. 91–102. Zbl1140.32309MR2181959
- [7] F. Campana & T. Peternell – « Projective manifolds with splitting tangent bundle I », Math. Z.241 (2002), p. 613–637. Zbl1065.14054MR1938707
- [8] J.-P. Demailly – « On the frobenius integrability of certain holomorphic -forms », Complex geometry (Göttingen, 2000), Springer, Berlin, 2002, p. 93–98. Zbl1011.32019MR1922099
- [9] S. Druel – « Variétés algébriques dont le fibré tangent est totalement décomposé », J. reine angew. Math. 522 (2000), p. 9161–171. Zbl0946.14005MR1758581
- [10] C. Godbillon – « Feuilletages : études géométriques », Progress in Mathematics, vol. 98, Birkhäuser Verlag, Basel, 1991. Zbl0724.58002MR1120547
- [11] J. V. Pereira – « Global stability for holomorphic foliations on Kaehler manifolds », Qual. Theory Dyn. Syst.2 (2001), p. 381–384. Zbl1074.53019MR1913291
- [12] —, « Fibrations, divisors and transcendental leaves », J. Algebraic Geom. 15 (2006), no. 1, p. 87–110. Zbl1089.32027MR2177196
- [13] C. Simpson – « Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization », J. Amer. Math. Soc.1 (1988), p. 867–918. Zbl0669.58008MR944577