Kähler manifolds with split tangent bundle

Marco Brunella; Jorge Vitório Pereira; Frédéric Touzet

Bulletin de la Société Mathématique de France (2006)

  • Volume: 134, Issue: 2, page 241-252
  • ISSN: 0037-9484

Abstract

top
This paper is concerned with compact Kähler manifolds whose tangent bundle splits as a sum of subbundles. In particular, it is shown that if the tangent bundle is a sum of line bundles, then the manifold is uniformised by a product of curves. The methods are taken from the theory of foliations of (co)dimension 1.

How to cite

top

Brunella, Marco, Vitório Pereira, Jorge, and Touzet, Frédéric. "Kähler manifolds with split tangent bundle." Bulletin de la Société Mathématique de France 134.2 (2006): 241-252. <http://eudml.org/doc/272499>.

@article{Brunella2006,
abstract = {This paper is concerned with compact Kähler manifolds whose tangent bundle splits as a sum of subbundles. In particular, it is shown that if the tangent bundle is a sum of line bundles, then the manifold is uniformised by a product of curves. The methods are taken from the theory of foliations of (co)dimension 1.},
author = {Brunella, Marco, Vitório Pereira, Jorge, Touzet, Frédéric},
journal = {Bulletin de la Société Mathématique de France},
keywords = {kähler manifolds; holomorphic foliations; uniformisation; integrability},
language = {eng},
number = {2},
pages = {241-252},
publisher = {Société mathématique de France},
title = {Kähler manifolds with split tangent bundle},
url = {http://eudml.org/doc/272499},
volume = {134},
year = {2006},
}

TY - JOUR
AU - Brunella, Marco
AU - Vitório Pereira, Jorge
AU - Touzet, Frédéric
TI - Kähler manifolds with split tangent bundle
JO - Bulletin de la Société Mathématique de France
PY - 2006
PB - Société mathématique de France
VL - 134
IS - 2
SP - 241
EP - 252
AB - This paper is concerned with compact Kähler manifolds whose tangent bundle splits as a sum of subbundles. In particular, it is shown that if the tangent bundle is a sum of line bundles, then the manifold is uniformised by a product of curves. The methods are taken from the theory of foliations of (co)dimension 1.
LA - eng
KW - kähler manifolds; holomorphic foliations; uniformisation; integrability
UR - http://eudml.org/doc/272499
ER -

References

top
  1. [1] L. Alessandrini & G. Bassanelli – « Plurisubharmonic currents and their extension across analytic subsets », Forum Math.5 (1993), p. 577–602. Zbl0784.32014MR1242890
  2. [2] A. Beauville – « Complex manifolds with split tangent bundle », Complex analysis and algebraic geometry, de Gruyter, Berlin, 2000, p. 61–70. Zbl1001.32010MR1760872
  3. [3] F. Bogomolov & M. McQuillan – « Rational curves on foliated varieties », Preprint IHÉS (2001). 
  4. [4] M. Brunella – « Feuilletages holomorphes sur les surfaces complexes compactes », Ann. Sci. École Norm. Sup.30 (1997), p. 569–594. Zbl0893.32019MR1474805
  5. [5] —, « Plurisubharmonic variation of the leafwise Poincaré metric », Int. J. Math.14 (2003), p. 139–151. Zbl1052.32027MR1966769
  6. [6] —, « Some remarks on parabolic foliations », Contemp. Math.389 (2005), p. 91–102. Zbl1140.32309MR2181959
  7. [7] F. Campana & T. Peternell – « Projective manifolds with splitting tangent bundle I », Math. Z.241 (2002), p. 613–637. Zbl1065.14054MR1938707
  8. [8] J.-P. Demailly – « On the frobenius integrability of certain holomorphic p -forms », Complex geometry (Göttingen, 2000), Springer, Berlin, 2002, p. 93–98. Zbl1011.32019MR1922099
  9. [9] S. Druel – « Variétés algébriques dont le fibré tangent est totalement décomposé », J. reine angew. Math. 522 (2000), p. 9161–171. Zbl0946.14005MR1758581
  10. [10] C. Godbillon – « Feuilletages : études géométriques », Progress in Mathematics, vol. 98, Birkhäuser Verlag, Basel, 1991. Zbl0724.58002MR1120547
  11. [11] J. V. Pereira – « Global stability for holomorphic foliations on Kaehler manifolds », Qual. Theory Dyn. Syst.2 (2001), p. 381–384. Zbl1074.53019MR1913291
  12. [12] —, « Fibrations, divisors and transcendental leaves », J. Algebraic Geom. 15 (2006), no. 1, p. 87–110. Zbl1089.32027MR2177196
  13. [13] C. Simpson – « Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization », J. Amer. Math. Soc.1 (1988), p. 867–918. Zbl0669.58008MR944577

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.