Overconvergent de Rham-Witt cohomology

Christopher Davis; Andreas Langer; Thomas Zink

Annales scientifiques de l'École Normale Supérieure (2011)

  • Volume: 44, Issue: 2, page 197-262
  • ISSN: 0012-9593

Abstract

top
The goal of this work is to construct, for a smooth variety X over a perfect field k of finite characteristic p > 0 , an overconvergent de Rham-Witt complex W Ω X / k as a suitable subcomplex of the de Rham-Witt complex of Deligne-Illusie. This complex, which is functorial in X , is a complex of étale sheaves and a differential graded algebra over the ring W ( 𝒪 X ) of overconvergent Witt-vectors. If X is affine one proves that there is an isomorphism between Monsky-Washnitzer cohomology and (rational) overconvergent de Rham-Witt cohomology. Finally we define for a quasiprojective X an isomorphism between the rational overconvergent de Rham-Witt cohomology and the rigid cohomology.

How to cite

top

Davis, Christopher, Langer, Andreas, and Zink, Thomas. "Overconvergent de Rham-Witt cohomology." Annales scientifiques de l'École Normale Supérieure 44.2 (2011): 197-262. <http://eudml.org/doc/272170>.

@article{Davis2011,
abstract = {The goal of this work is to construct, for a smooth variety $X$ over a perfect field k of finite characteristic $p &gt; 0$, an overconvergent de Rham-Witt complex $W^\{\dag \}\Omega _\{X/k\}$ as a suitable subcomplex of the de Rham-Witt complex of Deligne-Illusie. This complex, which is functorial in $X$, is a complex of étale sheaves and a differential graded algebra over the ring $W^\{\dag \}(\mathcal \{O\}_X)$ of overconvergent Witt-vectors. If $X$ is affine one proves that there is an isomorphism between Monsky-Washnitzer cohomology and (rational) overconvergent de Rham-Witt cohomology. Finally we define for a quasiprojective $X$ an isomorphism between the rational overconvergent de Rham-Witt cohomology and the rigid cohomology.},
author = {Davis, Christopher, Langer, Andreas, Zink, Thomas},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {rigid cohomology; de Rham-Witt complex},
language = {eng},
number = {2},
pages = {197-262},
publisher = {Société mathématique de France},
title = {Overconvergent de Rham-Witt cohomology},
url = {http://eudml.org/doc/272170},
volume = {44},
year = {2011},
}

TY - JOUR
AU - Davis, Christopher
AU - Langer, Andreas
AU - Zink, Thomas
TI - Overconvergent de Rham-Witt cohomology
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2011
PB - Société mathématique de France
VL - 44
IS - 2
SP - 197
EP - 262
AB - The goal of this work is to construct, for a smooth variety $X$ over a perfect field k of finite characteristic $p &gt; 0$, an overconvergent de Rham-Witt complex $W^{\dag }\Omega _{X/k}$ as a suitable subcomplex of the de Rham-Witt complex of Deligne-Illusie. This complex, which is functorial in $X$, is a complex of étale sheaves and a differential graded algebra over the ring $W^{\dag }(\mathcal {O}_X)$ of overconvergent Witt-vectors. If $X$ is affine one proves that there is an isomorphism between Monsky-Washnitzer cohomology and (rational) overconvergent de Rham-Witt cohomology. Finally we define for a quasiprojective $X$ an isomorphism between the rational overconvergent de Rham-Witt cohomology and the rigid cohomology.
LA - eng
KW - rigid cohomology; de Rham-Witt complex
UR - http://eudml.org/doc/272170
ER -

References

top
  1. [1] P. Berthelot, Cohomologie rigide et cohomologie rigide à supports propres, preprint 96-03 de l’université de Rennes, http://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf, 1996. 
  2. [2] P. Berthelot, Finitude et pureté cohomologique en cohomologie rigide, Invent. Math.128 (1997), 329–377. Zbl0908.14005
  3. [3] S. Bosch, U. Güntzer & R. Remmert, Non-Archimedean analysis, Grund. Math. Wiss. 261, Springer, 1984. Zbl0539.14017
  4. [4] B. Chiarellotto & N. Tsuzuki, Cohomological descent of rigid cohomology for étale coverings, Rend. Sem. Mat. Univ. Padova109 (2003), 63–215. Zbl1167.14306
  5. [5] C. Davis, A. Langer & T. Zink, Overconvergent Witt vectors, preprint http://www.math.uci.edu/~davis/DLZOCW.pdf. Zbl1261.13013
  6. [6] E. Grosse-Klönne, Rigid analytic spaces with overconvergent structure sheaf, J. reine angew. Math. 519 (2000), 73–95. Zbl0945.14013
  7. [7] A. Grothendieck & J. Dieudonné, Éléments de géométrie algébrique, Publ. Math. I.H.É.S. 4, 8, 11, 17, 20, 24, 28, 32 (1960–67). Zbl0203.23301
  8. [8] L. Illusie, Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup.12 (1979), 501–661. Zbl0436.14007
  9. [9] K. S. Kedlaya, More étale covers of affine spaces in positive characteristic, J. Algebraic Geom.14 (2005), 187–192. Zbl1065.14020MR2092132
  10. [10] A. Langer & T. Zink, De Rham-Witt cohomology for a proper and smooth morphism, J. Inst. Math. Jussieu3 (2004), 231–314. Zbl1100.14506MR2055710
  11. [11] A. Langer & T. Zink, Gauss-Manin connection via Witt-differentials, Nagoya Math. J.179 (2005), 1–16. Zbl1101.14020MR2164399
  12. [12] S. Lubkin, Generalization of p -adic cohomology: bounded Witt vectors. A canonical lifting of a variety in characteristic p 0 back to characteristic zero, Compositio Math. 34 (1977), 225–277. Zbl0368.14009MR453745
  13. [13] D. Meredith, Weak formal schemes, Nagoya Math. J.45 (1972), 1–38. Zbl0207.51502MR330167
  14. [14] P. Monsky & G. Washnitzer, Formal cohomology. I, Ann. of Math. 88 (1968), 181–217. Zbl0162.52504MR248141

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.