Overconvergent de Rham-Witt cohomology
Christopher Davis; Andreas Langer; Thomas Zink
Annales scientifiques de l'École Normale Supérieure (2011)
- Volume: 44, Issue: 2, page 197-262
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topDavis, Christopher, Langer, Andreas, and Zink, Thomas. "Overconvergent de Rham-Witt cohomology." Annales scientifiques de l'École Normale Supérieure 44.2 (2011): 197-262. <http://eudml.org/doc/272170>.
@article{Davis2011,
abstract = {The goal of this work is to construct, for a smooth variety $X$ over a perfect field k of finite characteristic $p > 0$, an overconvergent de Rham-Witt complex $W^\{\dag \}\Omega _\{X/k\}$ as a suitable subcomplex of the de Rham-Witt complex of Deligne-Illusie. This complex, which is functorial in $X$, is a complex of étale sheaves and a differential graded algebra over the ring $W^\{\dag \}(\mathcal \{O\}_X)$ of overconvergent Witt-vectors. If $X$ is affine one proves that there is an isomorphism between Monsky-Washnitzer cohomology and (rational) overconvergent de Rham-Witt cohomology. Finally we define for a quasiprojective $X$ an isomorphism between the rational overconvergent de Rham-Witt cohomology and the rigid cohomology.},
author = {Davis, Christopher, Langer, Andreas, Zink, Thomas},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {rigid cohomology; de Rham-Witt complex},
language = {eng},
number = {2},
pages = {197-262},
publisher = {Société mathématique de France},
title = {Overconvergent de Rham-Witt cohomology},
url = {http://eudml.org/doc/272170},
volume = {44},
year = {2011},
}
TY - JOUR
AU - Davis, Christopher
AU - Langer, Andreas
AU - Zink, Thomas
TI - Overconvergent de Rham-Witt cohomology
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2011
PB - Société mathématique de France
VL - 44
IS - 2
SP - 197
EP - 262
AB - The goal of this work is to construct, for a smooth variety $X$ over a perfect field k of finite characteristic $p > 0$, an overconvergent de Rham-Witt complex $W^{\dag }\Omega _{X/k}$ as a suitable subcomplex of the de Rham-Witt complex of Deligne-Illusie. This complex, which is functorial in $X$, is a complex of étale sheaves and a differential graded algebra over the ring $W^{\dag }(\mathcal {O}_X)$ of overconvergent Witt-vectors. If $X$ is affine one proves that there is an isomorphism between Monsky-Washnitzer cohomology and (rational) overconvergent de Rham-Witt cohomology. Finally we define for a quasiprojective $X$ an isomorphism between the rational overconvergent de Rham-Witt cohomology and the rigid cohomology.
LA - eng
KW - rigid cohomology; de Rham-Witt complex
UR - http://eudml.org/doc/272170
ER -
References
top- [1] P. Berthelot, Cohomologie rigide et cohomologie rigide à supports propres, preprint 96-03 de l’université de Rennes, http://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf, 1996.
- [2] P. Berthelot, Finitude et pureté cohomologique en cohomologie rigide, Invent. Math.128 (1997), 329–377. Zbl0908.14005
- [3] S. Bosch, U. Güntzer & R. Remmert, Non-Archimedean analysis, Grund. Math. Wiss. 261, Springer, 1984. Zbl0539.14017
- [4] B. Chiarellotto & N. Tsuzuki, Cohomological descent of rigid cohomology for étale coverings, Rend. Sem. Mat. Univ. Padova109 (2003), 63–215. Zbl1167.14306
- [5] C. Davis, A. Langer & T. Zink, Overconvergent Witt vectors, preprint http://www.math.uci.edu/~davis/DLZOCW.pdf. Zbl1261.13013
- [6] E. Grosse-Klönne, Rigid analytic spaces with overconvergent structure sheaf, J. reine angew. Math. 519 (2000), 73–95. Zbl0945.14013
- [7] A. Grothendieck & J. Dieudonné, Éléments de géométrie algébrique, Publ. Math. I.H.É.S. 4, 8, 11, 17, 20, 24, 28, 32 (1960–67). Zbl0203.23301
- [8] L. Illusie, Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup.12 (1979), 501–661. Zbl0436.14007
- [9] K. S. Kedlaya, More étale covers of affine spaces in positive characteristic, J. Algebraic Geom.14 (2005), 187–192. Zbl1065.14020MR2092132
- [10] A. Langer & T. Zink, De Rham-Witt cohomology for a proper and smooth morphism, J. Inst. Math. Jussieu3 (2004), 231–314. Zbl1100.14506MR2055710
- [11] A. Langer & T. Zink, Gauss-Manin connection via Witt-differentials, Nagoya Math. J.179 (2005), 1–16. Zbl1101.14020MR2164399
- [12] S. Lubkin, Generalization of -adic cohomology: bounded Witt vectors. A canonical lifting of a variety in characteristic back to characteristic zero, Compositio Math. 34 (1977), 225–277. Zbl0368.14009MR453745
- [13] D. Meredith, Weak formal schemes, Nagoya Math. J.45 (1972), 1–38. Zbl0207.51502MR330167
- [14] P. Monsky & G. Washnitzer, Formal cohomology. I, Ann. of Math. 88 (1968), 181–217. Zbl0162.52504MR248141
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.