Coarse topology, enlargeability, and essentialness
Bernhard Hanke; Dieter Kotschick; John Roe; Thomas Schick
Annales scientifiques de l'École Normale Supérieure (2008)
- Volume: 41, Issue: 3, page 473-495
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topHanke, Bernhard, et al. "Coarse topology, enlargeability, and essentialness." Annales scientifiques de l'École Normale Supérieure 41.3 (2008): 473-495. <http://eudml.org/doc/272174>.
@article{Hanke2008,
abstract = {Using methods from coarse topology we show that fundamental classes of closed enlargeable manifolds map non-trivially both to the rational homology of their fundamental groups and to the $K$-theory of the corresponding reduced $C^*$-algebras. Our proofs do not depend on the Baum–Connes conjecture and provide independent confirmation for specific predictions derived from this conjecture.},
author = {Hanke, Bernhard, Kotschick, Dieter, Roe, John, Schick, Thomas},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {enlargeable manifold; universally enlargeable manifold; essential manifold; macroscopically large manifold; coarse homology; Baum-Connes assembly map; -theory enlargeability; scalar curvature},
language = {eng},
number = {3},
pages = {473-495},
publisher = {Société mathématique de France},
title = {Coarse topology, enlargeability, and essentialness},
url = {http://eudml.org/doc/272174},
volume = {41},
year = {2008},
}
TY - JOUR
AU - Hanke, Bernhard
AU - Kotschick, Dieter
AU - Roe, John
AU - Schick, Thomas
TI - Coarse topology, enlargeability, and essentialness
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 3
SP - 473
EP - 495
AB - Using methods from coarse topology we show that fundamental classes of closed enlargeable manifolds map non-trivially both to the rational homology of their fundamental groups and to the $K$-theory of the corresponding reduced $C^*$-algebras. Our proofs do not depend on the Baum–Connes conjecture and provide independent confirmation for specific predictions derived from this conjecture.
LA - eng
KW - enlargeable manifold; universally enlargeable manifold; essential manifold; macroscopically large manifold; coarse homology; Baum-Connes assembly map; -theory enlargeability; scalar curvature
UR - http://eudml.org/doc/272174
ER -
References
top- [1] M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, in Colloque “Analyse et Topologie” en l’honneur de Henri Cartan (Orsay, 1974), Astérisque 32–33, 1976, 43–72. Zbl0323.58015MR420729
- [2] P. Baum, A. Connes & N. Higson, Classifying space for proper actions and -theory of group -algebras, in Proceedings of a special session on -algebras:1943–1993 (San Antonio, TX, 1993), Contemp. Math. 167, 1994, 240–291. Zbl0830.46061
- [3] B. Blackadar, -theory for operator algebras, second éd., Mathematical Sciences Research Institute Publications 5, Cambridge University Press, 1998. Zbl0913.46054MR1656031
- [4] J. Block & S. Weinberger, Aperiodic tilings, positive scalar curvature and amenability of spaces, J. Amer. Math. Soc.5 (1992), 907–918. Zbl0780.53031
- [5] I. Chatterji & G. Mislin, Atiyah’s -index theorem, Enseign. Math.49 (2003), 85–93. Zbl1044.58025
- [6] A. N. Dranishnikov, On hypersphericity of manifolds with finite asymptotic dimension, Trans. Amer. Math. Soc.355 (2003), 155–167. Zbl1020.53025MR1928082
- [7] W. Dwyer, T. Schick & S. Stolz, Remarks on a conjecture of Gromov and Lawson, in High-dimensional manifold topology, World Sci. Publ., River Edge, NJ, 2003, 159–176. Zbl1052.57035
- [8] G. Gong & G. Yu, Volume growth and positive scalar curvature, Geom. Funct. Anal.10 (2000), 821–828. Zbl0979.53033
- [9] M. Gromov, Volume and bounded cohomology, Publ. Math. I.H.É.S. 56 (1982), 5–99 (1983). Zbl0516.53046MR686042
- [10] M. Gromov, Large Riemannian manifolds, in Curvature and topology of Riemannian manifolds (Katata, 1985), Lecture Notes in Math. 1201, Springer, 1986, 108–121. Zbl0601.53038MR859578
- [11] M. Gromov, Asymptotic invariants of infinite groups, in Geometric group theory, Vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press, 1993, 1–295. Zbl0841.20039MR1253544
- [12] M. Gromov, Positive curvature, macroscopic dimension, spectral gaps and higher signatures, in Functional analysis on the eve of the 21st century, Vol. II (New Brunswick, NJ, 1993), Progr. Math. 132, Birkhäuser, 1996, 1–213. Zbl0945.53022MR1389019
- [13] M. Gromov & H. B. J. Lawson, Spin and scalar curvature in the presence of a fundamental group. I, Ann. of Math. 111 (1980), 209–230. Zbl0445.53025
- [14] M. Gromov & H. B. J. Lawson, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math. I.H.É.S. 58 (1983), 83–196. Zbl0538.53047
- [15] B. Hanke & T. Schick, Enlargeability and index theory, J. Differential Geom.74 (2006), 293–320. Zbl1122.58011
- [16] B. Hanke & T. Schick, Enlargeability and index theory: infinite covers, -Theory 38 (2007), 23–33. Zbl1128.58012
- [17] N. Higson, E. K. Pedersen & J. Roe, -algebras and controlled topology, -Theory 11 (1997), 209–239. Zbl0879.19003
- [18] N. Higson & J. Roe, Analytic -homology, Oxford Mathematical Monographs, Oxford University Press, 2000. Zbl0968.46058
- [19] D. S. Kahn, J. Kaminker & C. Schochet, Generalized homology theories on compact metric spaces, Michigan Math. J.24 (1977), 203–224. Zbl0384.55001
- [20] J. Kaminker & C. Schochet, -theory and Steenrod homology: applications to the Brown-Douglas-Fillmore theory of operator algebras, Trans. Amer. Math. Soc.227 (1977), 63–107. Zbl0368.46054
- [21] J. Milnor, On the Steenrod homology theory, in Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser. 226, Cambridge Univ. Press, 1995, 79–96. Zbl0954.55004MR1388297
- [22] J. Roe, Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics 90, American Math. Soc., 1996. Zbl0853.58003MR1399087
- [23] J. Roe, Comparing analytic assembly maps, Q. J. Math.53 (2002), 241–248. Zbl1014.46045MR1909514
- [24] J. Roe, Lectures on coarse geometry, University Lecture Series 31, American Math. Soc., 2003. Zbl1042.53027MR2007488
- [25] T. Schick, A counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture, Topology37 (1998), 1165–1168. Zbl0976.53052MR1632971
- [26] R. Schultz (éd.), Group actions on manifolds, Contemporary Mathematics 36, Amer. Math. Soc., 1985. Zbl0549.00017MR780951
- [27] S. Stolz, Manifolds of positive scalar curvature, in Topology of high-dimensional manifolds, No. 1, 2 (Trieste, 2001), ICTP Lect. Notes 9, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2002, 661–709. Zbl1083.53036MR1937026
- [28] N. E. Wegge-Olsen, -theory and -algebras: a friendly approach, Oxford Science Publications, Oxford University Press, 1993. Zbl0780.46038MR1222415
- [29] G. Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math.139 (2000), 201–240. Zbl0956.19004MR1728880
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.