A duality theorem for Dieudonné displays

Eike Lau

Annales scientifiques de l'École Normale Supérieure (2009)

  • Volume: 42, Issue: 2, page 241-259
  • ISSN: 0012-9593

Abstract

top
We show that the Zink equivalence between p -divisible groups and Dieudonné displays over a complete local ring with perfect residue field of characteristic p is compatible with duality. The proof relies on a new explicit formula for the p -divisible group associated to a Dieudonné display.

How to cite

top

Lau, Eike. "A duality theorem for Dieudonné displays." Annales scientifiques de l'École Normale Supérieure 42.2 (2009): 241-259. <http://eudml.org/doc/272184>.

@article{Lau2009,
abstract = {We show that the Zink equivalence between $p$-divisible groups and Dieudonné displays over a complete local ring with perfect residue field of characteristic $p$ is compatible with duality. The proof relies on a new explicit formula for the $p$-divisible group associated to a Dieudonné display.},
author = {Lau, Eike},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {$p$-divisible groups; dieudonné displays; duality; biextensions; Dieudonné displays; -divisible groups},
language = {eng},
number = {2},
pages = {241-259},
publisher = {Société mathématique de France},
title = {A duality theorem for Dieudonné displays},
url = {http://eudml.org/doc/272184},
volume = {42},
year = {2009},
}

TY - JOUR
AU - Lau, Eike
TI - A duality theorem for Dieudonné displays
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 2
SP - 241
EP - 259
AB - We show that the Zink equivalence between $p$-divisible groups and Dieudonné displays over a complete local ring with perfect residue field of characteristic $p$ is compatible with duality. The proof relies on a new explicit formula for the $p$-divisible group associated to a Dieudonné display.
LA - eng
KW - $p$-divisible groups; dieudonné displays; duality; biextensions; Dieudonné displays; -divisible groups
UR - http://eudml.org/doc/272184
ER -

References

top
  1. [1] P. Berthelot, L. Breen & W. Messing, Théorie de Dieudonné cristalline II, Lecture Notes in Math. 930, Springer, 1982. Zbl0516.14015MR667344
  2. [2] C. Breuil, Groupes p -divisibles, groupes finis et modules filtrés, Ann. of Math.152 (2000), 489–549. Zbl1042.14018MR1804530
  3. [3] P. Cartier, Groupes formels associés aux anneaux de Witt généralisés, C. R. Acad. Sci.265 (1976), 50–52. Zbl0168.27501
  4. [4] X. Caruso, Dualité de Cartier et modules de Breuil, preprint arXiv:math/0511423. 
  5. [5] E. Lau, Displays and formal p -divisible groups, Invent. Math.171 (2008), 617–628. Zbl1186.14048MR2372808
  6. [6] H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, 1986. Zbl0603.13001MR879273
  7. [7] B. Mazur & W. Messing, Universal extensions and one dimensional crystalline cohomology, Lecture Notes in Math. 370, Springer, 1974. Zbl0301.14016MR374150
  8. [8] W. Messing, The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, Lecture Notes in Math. 264, Springer, 1972. Zbl0243.14013MR347836
  9. [9] D. Mumford, Bi-extensions of formal groups, in Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, 1969, 307–322. Zbl0216.33101MR257089
  10. [10] P. Norman, An algorithm for computing local moduli of abelian varieties, Ann. Math.101 (1975), 499–509. Zbl0309.14031MR389928
  11. [11] T. Zink, A Dieudonné theory for p -divisible groups, in Class field theory—its centenary and prospect (Tokyo, 1998), Adv. Stud. Pure Math. 30, Math. Soc. Japan, 2001, 139–160. Zbl1052.14048MR1846456
  12. [12] T. Zink, Windows for displays of p -divisible groups, in Moduli of abelian varieties (Texel Island, 1999), Progr. Math. 195, Birkhäuser, 2001, 491–518. Zbl1099.14036MR1827031
  13. [13] T. Zink, The display of a formal p -divisible group, Astérisque278 (2002), 127–248. Zbl1008.14008MR1922825

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.