Trees and the dynamics of polynomials

Laura G. DeMarco; Curtis T. McMullen

Annales scientifiques de l'École Normale Supérieure (2008)

  • Volume: 41, Issue: 3, page 337-383
  • ISSN: 0012-9593

Abstract

top
In this paper we study branched coverings of metrized, simplicial trees F : T T which arise from polynomial maps f : with disconnected Julia sets. We show that the collection of all such trees, up to scale, forms a contractible space T D compactifying the moduli space of polynomials of degree D ; that F records the asymptotic behavior of the multipliers of f ; and that any meromorphic family of polynomials over Δ * can be completed by a unique tree at its central fiber. In the cubic case we give a combinatorial enumeration of the trees that arise, and show that T 3 is itself a tree.

How to cite

top

DeMarco, Laura G., and McMullen, Curtis T.. "Trees and the dynamics of polynomials." Annales scientifiques de l'École Normale Supérieure 41.3 (2008): 337-383. <http://eudml.org/doc/272221>.

@article{DeMarco2008,
abstract = {In this paper we study branched coverings of metrized, simplicial trees $F : T \rightarrow T$ which arise from polynomial maps $f : \mathbb \{C\} \rightarrow \mathbb \{C\}$ with disconnected Julia sets. We show that the collection of all such trees, up to scale, forms a contractible space $\mathbb \{P\}T_D$ compactifying the moduli space of polynomials of degree $D$; that $F$ records the asymptotic behavior of the multipliers of $f$; and that any meromorphic family of polynomials over $\Delta ^*$ can be completed by a unique tree at its central fiber. In the cubic case we give a combinatorial enumeration of the trees that arise, and show that $\mathbb \{P\}T_3$ is itself a tree.},
author = {DeMarco, Laura G., McMullen, Curtis T.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {complex dynamics; dynamics of polynomials; moduli space of polynomials; compactifications; basin of infinity; limiting dynamics; metrized trees},
language = {eng},
number = {3},
pages = {337-383},
publisher = {Société mathématique de France},
title = {Trees and the dynamics of polynomials},
url = {http://eudml.org/doc/272221},
volume = {41},
year = {2008},
}

TY - JOUR
AU - DeMarco, Laura G.
AU - McMullen, Curtis T.
TI - Trees and the dynamics of polynomials
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 3
SP - 337
EP - 383
AB - In this paper we study branched coverings of metrized, simplicial trees $F : T \rightarrow T$ which arise from polynomial maps $f : \mathbb {C} \rightarrow \mathbb {C}$ with disconnected Julia sets. We show that the collection of all such trees, up to scale, forms a contractible space $\mathbb {P}T_D$ compactifying the moduli space of polynomials of degree $D$; that $F$ records the asymptotic behavior of the multipliers of $f$; and that any meromorphic family of polynomials over $\Delta ^*$ can be completed by a unique tree at its central fiber. In the cubic case we give a combinatorial enumeration of the trees that arise, and show that $\mathbb {P}T_3$ is itself a tree.
LA - eng
KW - complex dynamics; dynamics of polynomials; moduli space of polynomials; compactifications; basin of infinity; limiting dynamics; metrized trees
UR - http://eudml.org/doc/272221
ER -

References

top
  1. [1] M. Baker & R. Rumely, Potential theory on the Berkovich projective line, in preparation. 
  2. [2] R. L. Benedetto, Reduction, dynamics, and Julia sets of rational functions, J. Number Theory86 (2001), 175–195. Zbl0978.37039MR1813109
  3. [3] B. Branner & J. H. Hubbard, The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math. 160 (1988), 143–206. Zbl0668.30008
  4. [4] B. Branner & J. H. Hubbard, The iteration of cubic polynomials. II. Patterns and parapatterns, Acta Math. 169 (1992), 229–325. Zbl0812.30008
  5. [5] H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103–144 (1965). Zbl0127.03401MR194595
  6. [6] A. L. Edmonds, R. S. Kulkarni & R. E. Stong, Realizability of branched coverings of surfaces, Trans. Amer. Math. Soc.282 (1984), 773–790. Zbl0603.57001
  7. [7] N. D. Emerson, Dynamics of polynomials with disconnected Julia sets, Discrete Contin. Dyn. Syst.9 (2003), 801–834. Zbl1047.37028MR1975358
  8. [8] N. D. Emerson, Brownian motion, random walks on trees, and harmonic measure on polynomial Julia sets, preprint, 2006. 
  9. [9] C. Favre & J. Rivera-Letelier, Théorie ergodique des fractions rationnelles sur un corps ultramétrique, preprint, 2007. Zbl1254.37064
  10. [10] A. Freire, A. Lopes & R. Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat.14 (1983), 45–62. Zbl0568.58027
  11. [11] M. Gromov, Structures métriques pour les variétés riemanniennes, Textes Mathématiques 1, CEDIC, 1981. Zbl0509.53034MR682063
  12. [12] M. Gromov, On the entropy of holomorphic maps, Enseign. Math.49 (2003), 217–235. Zbl1080.37051MR2026895
  13. [13] D. M. Harris, Turning curves for critically recurrent cubic polynomials, Nonlinearity12 (1999), 411–418. Zbl0963.37040MR1677771
  14. [14] J. H. Hubbard, Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, in Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, 1993, 467–511. Zbl0797.58049MR1215974
  15. [15] J. Kiwi, Puiseux series polynomial dynamics and iteration of complex cubic polynomials, Ann. Inst. Fourier (Grenoble) 56 (2006), 1337–1404. Zbl1110.37036MR2273859
  16. [16] O. Kozlovski & S. van Strien, Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, preprint, 2006. Zbl1196.37083
  17. [17] O. Lehto & K. I. Virtanen, Quasiconformal mappings in the plane, second éd., Springer, 1973. Zbl0267.30016
  18. [18] M. J. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems3 (1983), 351–385. Zbl0537.58035MR741393
  19. [19] C. T. McMullen, Automorphisms of rational maps, in Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ. 10, Springer, 1988, 31–60. Zbl0692.30035MR955807
  20. [20] C. T. McMullen, The classification of conformal dynamical systems, in Current developments in mathematics, 1995 (Cambridge, MA), 323–360, Int. Press, Cambridge, MA, 1994. Zbl0908.30028MR1474980
  21. [21] C. T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies 135, Princeton University Press, 1994. Zbl0822.30002MR1312365
  22. [22] C. T. McMullen, Ribbon -trees and holomorphic dynamics on the unit disk, preprint, 2007. Zbl1173.37043MR2499437
  23. [23] J. Milnor, Local connectivity of Julia sets: expository lectures, in The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser. 274, Cambridge Univ. Press, 2000, 67–116. Zbl1107.37305MR1765085
  24. [24] J. W. Morgan, Trees and hyperbolic geometry, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., 1987, 590–597. Zbl0681.57025MR934260
  25. [25] J. W. Morgan & P. B. Shalen, Valuations, trees, and degenerations of hyperbolic structures. I, Ann. of Math. 120 (1984), 401–476. Zbl0583.57005
  26. [26] J. W. Morgan & P. B. Shalen, An introduction to compactifying spaces of hyperbolic structures by actions on trees, in Geometry and topology (College Park, Md., 1983/84), Lecture Notes in Math. 1167, Springer, 1985, 228–240. Zbl0592.57007
  27. [27] J.-P. Otal, Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3, Astérisque 235 (1996). Zbl0855.57003
  28. [28] W. Parry, Entropy and generators in ergodic theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Zbl0175.34001MR262464
  29. [29] F. Paulin, Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math.94 (1988), 53–80. Zbl0673.57034MR958589
  30. [30] R. Pérez-Marco, Fixed points and circle maps, Acta Math.179 (1997), 243–294. Zbl0914.58027MR1607557
  31. [31] K. M. Pilgrim, Dessins d’enfants and Hubbard trees, Ann. Sci. École Norm. Sup.33 (2000), 671–693. Zbl1066.14503MR1834499
  32. [32] F. Przytycki & J. Skrzypczak, Convergence and pre-images of limit points for coding trees for iterations of holomorphic maps, Math. Ann.290 (1991), 425–440. Zbl0704.30035
  33. [33] W. Qiu & Y. Yin, Proof of the Branner-Hubbard conjecture on Cantor Julia sets, preprint, 2006. Zbl1187.37070
  34. [34] J. Rivera-Letelier, Dynamique des fonctions rationnelles sur des corps locaux, in Geometric methods in dynamics. II, Astérisque 287, 2003, 147–230. Zbl1140.37336MR2040006
  35. [35] J. Rivera-Letelier, Points périodiques des fonctions rationnelles dans l’espace hyperbolique p -adique, Comment. Math. Helv.80 (2005), 593–629. Zbl1140.37337MR2165204
  36. [36] L. Sario & M. Nakai, Classification theory of Riemann surfaces, Die Grund. Math. Wiss., Band 164, Springer, 1970. Zbl0199.40603
  37. [37] M. Shishikura, Trees associated with the configuration of Herman rings, Ergodic Theory Dynam. Systems9 (1989), 543–560. Zbl0688.30019MR1016671
  38. [38] G. Springer, Riemann surfaces, Chelsea Publishing Co., 1981. 
  39. [39] R. Vakil, Genus 0 and 1 Hurwitz numbers: recursions, formulas, and graph-theoretic interpretations, Trans. Amer. Math. Soc.353 (2001), 4025–4038. Zbl0980.14021MR1837218

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.