Trees and the dynamics of polynomials
Laura G. DeMarco; Curtis T. McMullen
Annales scientifiques de l'École Normale Supérieure (2008)
- Volume: 41, Issue: 3, page 337-383
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topDeMarco, Laura G., and McMullen, Curtis T.. "Trees and the dynamics of polynomials." Annales scientifiques de l'École Normale Supérieure 41.3 (2008): 337-383. <http://eudml.org/doc/272221>.
@article{DeMarco2008,
abstract = {In this paper we study branched coverings of metrized, simplicial trees $F : T \rightarrow T$ which arise from polynomial maps $f : \mathbb \{C\} \rightarrow \mathbb \{C\}$ with disconnected Julia sets. We show that the collection of all such trees, up to scale, forms a contractible space $\mathbb \{P\}T_D$ compactifying the moduli space of polynomials of degree $D$; that $F$ records the asymptotic behavior of the multipliers of $f$; and that any meromorphic family of polynomials over $\Delta ^*$ can be completed by a unique tree at its central fiber. In the cubic case we give a combinatorial enumeration of the trees that arise, and show that $\mathbb \{P\}T_3$ is itself a tree.},
author = {DeMarco, Laura G., McMullen, Curtis T.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {complex dynamics; dynamics of polynomials; moduli space of polynomials; compactifications; basin of infinity; limiting dynamics; metrized trees},
language = {eng},
number = {3},
pages = {337-383},
publisher = {Société mathématique de France},
title = {Trees and the dynamics of polynomials},
url = {http://eudml.org/doc/272221},
volume = {41},
year = {2008},
}
TY - JOUR
AU - DeMarco, Laura G.
AU - McMullen, Curtis T.
TI - Trees and the dynamics of polynomials
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 3
SP - 337
EP - 383
AB - In this paper we study branched coverings of metrized, simplicial trees $F : T \rightarrow T$ which arise from polynomial maps $f : \mathbb {C} \rightarrow \mathbb {C}$ with disconnected Julia sets. We show that the collection of all such trees, up to scale, forms a contractible space $\mathbb {P}T_D$ compactifying the moduli space of polynomials of degree $D$; that $F$ records the asymptotic behavior of the multipliers of $f$; and that any meromorphic family of polynomials over $\Delta ^*$ can be completed by a unique tree at its central fiber. In the cubic case we give a combinatorial enumeration of the trees that arise, and show that $\mathbb {P}T_3$ is itself a tree.
LA - eng
KW - complex dynamics; dynamics of polynomials; moduli space of polynomials; compactifications; basin of infinity; limiting dynamics; metrized trees
UR - http://eudml.org/doc/272221
ER -
References
top- [1] M. Baker & R. Rumely, Potential theory on the Berkovich projective line, in preparation.
- [2] R. L. Benedetto, Reduction, dynamics, and Julia sets of rational functions, J. Number Theory86 (2001), 175–195. Zbl0978.37039MR1813109
- [3] B. Branner & J. H. Hubbard, The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math. 160 (1988), 143–206. Zbl0668.30008
- [4] B. Branner & J. H. Hubbard, The iteration of cubic polynomials. II. Patterns and parapatterns, Acta Math. 169 (1992), 229–325. Zbl0812.30008
- [5] H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103–144 (1965). Zbl0127.03401MR194595
- [6] A. L. Edmonds, R. S. Kulkarni & R. E. Stong, Realizability of branched coverings of surfaces, Trans. Amer. Math. Soc.282 (1984), 773–790. Zbl0603.57001
- [7] N. D. Emerson, Dynamics of polynomials with disconnected Julia sets, Discrete Contin. Dyn. Syst.9 (2003), 801–834. Zbl1047.37028MR1975358
- [8] N. D. Emerson, Brownian motion, random walks on trees, and harmonic measure on polynomial Julia sets, preprint, 2006.
- [9] C. Favre & J. Rivera-Letelier, Théorie ergodique des fractions rationnelles sur un corps ultramétrique, preprint, 2007. Zbl1254.37064
- [10] A. Freire, A. Lopes & R. Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat.14 (1983), 45–62. Zbl0568.58027
- [11] M. Gromov, Structures métriques pour les variétés riemanniennes, Textes Mathématiques 1, CEDIC, 1981. Zbl0509.53034MR682063
- [12] M. Gromov, On the entropy of holomorphic maps, Enseign. Math.49 (2003), 217–235. Zbl1080.37051MR2026895
- [13] D. M. Harris, Turning curves for critically recurrent cubic polynomials, Nonlinearity12 (1999), 411–418. Zbl0963.37040MR1677771
- [14] J. H. Hubbard, Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, in Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, 1993, 467–511. Zbl0797.58049MR1215974
- [15] J. Kiwi, Puiseux series polynomial dynamics and iteration of complex cubic polynomials, Ann. Inst. Fourier (Grenoble) 56 (2006), 1337–1404. Zbl1110.37036MR2273859
- [16] O. Kozlovski & S. van Strien, Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, preprint, 2006. Zbl1196.37083
- [17] O. Lehto & K. I. Virtanen, Quasiconformal mappings in the plane, second éd., Springer, 1973. Zbl0267.30016
- [18] M. J. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems3 (1983), 351–385. Zbl0537.58035MR741393
- [19] C. T. McMullen, Automorphisms of rational maps, in Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ. 10, Springer, 1988, 31–60. Zbl0692.30035MR955807
- [20] C. T. McMullen, The classification of conformal dynamical systems, in Current developments in mathematics, 1995 (Cambridge, MA), 323–360, Int. Press, Cambridge, MA, 1994. Zbl0908.30028MR1474980
- [21] C. T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies 135, Princeton University Press, 1994. Zbl0822.30002MR1312365
- [22] C. T. McMullen, Ribbon -trees and holomorphic dynamics on the unit disk, preprint, 2007. Zbl1173.37043MR2499437
- [23] J. Milnor, Local connectivity of Julia sets: expository lectures, in The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser. 274, Cambridge Univ. Press, 2000, 67–116. Zbl1107.37305MR1765085
- [24] J. W. Morgan, Trees and hyperbolic geometry, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., 1987, 590–597. Zbl0681.57025MR934260
- [25] J. W. Morgan & P. B. Shalen, Valuations, trees, and degenerations of hyperbolic structures. I, Ann. of Math. 120 (1984), 401–476. Zbl0583.57005
- [26] J. W. Morgan & P. B. Shalen, An introduction to compactifying spaces of hyperbolic structures by actions on trees, in Geometry and topology (College Park, Md., 1983/84), Lecture Notes in Math. 1167, Springer, 1985, 228–240. Zbl0592.57007
- [27] J.-P. Otal, Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3, Astérisque 235 (1996). Zbl0855.57003
- [28] W. Parry, Entropy and generators in ergodic theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Zbl0175.34001MR262464
- [29] F. Paulin, Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math.94 (1988), 53–80. Zbl0673.57034MR958589
- [30] R. Pérez-Marco, Fixed points and circle maps, Acta Math.179 (1997), 243–294. Zbl0914.58027MR1607557
- [31] K. M. Pilgrim, Dessins d’enfants and Hubbard trees, Ann. Sci. École Norm. Sup.33 (2000), 671–693. Zbl1066.14503MR1834499
- [32] F. Przytycki & J. Skrzypczak, Convergence and pre-images of limit points for coding trees for iterations of holomorphic maps, Math. Ann.290 (1991), 425–440. Zbl0704.30035
- [33] W. Qiu & Y. Yin, Proof of the Branner-Hubbard conjecture on Cantor Julia sets, preprint, 2006. Zbl1187.37070
- [34] J. Rivera-Letelier, Dynamique des fonctions rationnelles sur des corps locaux, in Geometric methods in dynamics. II, Astérisque 287, 2003, 147–230. Zbl1140.37336MR2040006
- [35] J. Rivera-Letelier, Points périodiques des fonctions rationnelles dans l’espace hyperbolique -adique, Comment. Math. Helv.80 (2005), 593–629. Zbl1140.37337MR2165204
- [36] L. Sario & M. Nakai, Classification theory of Riemann surfaces, Die Grund. Math. Wiss., Band 164, Springer, 1970. Zbl0199.40603
- [37] M. Shishikura, Trees associated with the configuration of Herman rings, Ergodic Theory Dynam. Systems9 (1989), 543–560. Zbl0688.30019MR1016671
- [38] G. Springer, Riemann surfaces, Chelsea Publishing Co., 1981.
- [39] R. Vakil, Genus 0 and 1 Hurwitz numbers: recursions, formulas, and graph-theoretic interpretations, Trans. Amer. Math. Soc.353 (2001), 4025–4038. Zbl0980.14021MR1837218
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.