Puiseux series polynomial dynamics and iteration of complex cubic polynomials
Jan Kiwi[1]
- [1] Facultad de Matemáticas Pontificia Universidad Católica Casilla 306, Correo 22, Santiago (Chile)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 5, page 1337-1404
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKiwi, Jan. "Puiseux series polynomial dynamics and iteration of complex cubic polynomials." Annales de l’institut Fourier 56.5 (2006): 1337-1404. <http://eudml.org/doc/10179>.
@article{Kiwi2006,
abstract = {We let $\mathbb\{L\}$ be the completion of the field of formal Puiseux series and study polynomials with coefficients in $\mathbb\{L\}$ as dynamical systems. We give a complete description of the dynamical and parameter space of cubic polynomials in $\mathbb\{L\} [\zeta ]$. We show that cubic polynomial dynamics over $\mathbb\{L\}$ and $\mathbb\{C\}$ are intimately related. More precisely, we establish that some elements of $\mathbb\{L\}$ naturally correspond to the Fourier series of analytic almost periodic functions (in the sense of Bohr) which parametrize (near infinity) the quasiconformal classes of non-renormalizable complex cubic polynomials. Our techniques are based on the ideas introduced by Branner and Hubbard to study complex cubic polynomials.},
affiliation = {Facultad de Matemáticas Pontificia Universidad Católica Casilla 306, Correo 22, Santiago (Chile)},
author = {Kiwi, Jan},
journal = {Annales de l’institut Fourier},
keywords = {Puiseux series; Julia sets; cubic polynomials},
language = {eng},
number = {5},
pages = {1337-1404},
publisher = {Association des Annales de l’institut Fourier},
title = {Puiseux series polynomial dynamics and iteration of complex cubic polynomials},
url = {http://eudml.org/doc/10179},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Kiwi, Jan
TI - Puiseux series polynomial dynamics and iteration of complex cubic polynomials
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 5
SP - 1337
EP - 1404
AB - We let $\mathbb{L}$ be the completion of the field of formal Puiseux series and study polynomials with coefficients in $\mathbb{L}$ as dynamical systems. We give a complete description of the dynamical and parameter space of cubic polynomials in $\mathbb{L} [\zeta ]$. We show that cubic polynomial dynamics over $\mathbb{L}$ and $\mathbb{C}$ are intimately related. More precisely, we establish that some elements of $\mathbb{L}$ naturally correspond to the Fourier series of analytic almost periodic functions (in the sense of Bohr) which parametrize (near infinity) the quasiconformal classes of non-renormalizable complex cubic polynomials. Our techniques are based on the ideas introduced by Branner and Hubbard to study complex cubic polynomials.
LA - eng
KW - Puiseux series; Julia sets; cubic polynomials
UR - http://eudml.org/doc/10179
ER -
References
top- L. Ahlfors, Lectures on quasiconformal mappings, (1966), Van Nostrand, Princeton Zbl0138.06002MR200442
- M. Baker, R. Rumely, Equidistribution of Small Points, Rational Dynamics, and Potential Theory Zbl1234.11082
- R.-L. Benedetto, Wandering Domains and Nontrivial Reduction in Non-Archimedean Dynamics Zbl1137.11354MR2157374
- R.-L. Benedetto, Hyperbolic maps in -adic dynamics, Ergodic Theory and Dynamical Systems 21 (2001), 1-11 Zbl0972.37027MR1826658
- R.-L. Benedetto, Examples of wandering domains in -adic polynomial dynamics, C. R. Math. Acad. Sci. Paris 7 (2002), 615-620 Zbl1151.37314MR1941304
- A.-S. Besicovitch, Almost periodic functions, (1954), Dover Zbl0065.07102MR68029
- J.-P. Bézivin, Sur la compacité des ensembles de Julia des polynômes –adiques, Math. Z. (2004), 273-289 Zbl1047.37031MR2031456
- P. Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. 11 (1984), 85-141 Zbl0558.58017MR741725
- B. Branner, Cubic polynomials: turning around the connectedness locus, (1993), 391-427, Publish or Perish Zbl0801.58024MR1215972
- B. Branner, J. H. Hubbard, The iteration of cubic polynomials. Part I: The global topology of parameter space, Acta math. 160 (1988), 143-206 Zbl0668.30008MR945011
- B. Branner, J. H. Hubbard, The iteration of cubic polynomials. Part II: Patterns and parapatterns, Acta math. 169 (1992), 229-325 Zbl0812.30008MR1194004
- E. Brieskorn, H. Knörrer, Plane algebraic curves, (1986), Birkhäuser Verlag, Basel Zbl0588.14019MR886476
- E. Casas-Alvero, Singularities of plane curves, LMS Lecture Notes Series 276 (2000), Cambridge University Press Zbl0967.14018MR1782072
- J.W.S. Cassels, Local fields, LMS student texts 3 (1986), Cambridge University Press Zbl0595.12006MR861410
- A. Escassut, Analytic elements in -adic analysis, (1995), World Scientific Zbl0933.30030MR1370442
- A. Escassut, Ultrametric Banach Algebras, (2003), World Scientific Zbl1026.46067MR1978961
- C. Favre, J. Rivera Letelier, Théorème d’équidistribution de Brolin en dynamique -adique, C. R. Math. Acad. Sci. Paris 4 (2004), 271-276 Zbl1052.37039MR2092012
- G. Fernandez, Componentes de Fatou errantes en dinámica -ádica, (2004), Chile
- S. Gelfand, Generalized Functions, 1 (1964), Academic Press Zbl0115.33101
- D. Harris, Turning curves for critically recurrent cubic polynomials, Nonlinearity 12 (1999), 411-418 Zbl0963.37040MR1677771
- Y. Katnelzon, An introduction to harmonic analysis, (1976), Dover Zbl0352.43001
- C.-T. McMullen, Complex Dynamics and Renormalization, (1994), Princeton University Press Zbl0822.30002MR1312365
- J. Milnor, On cubic polynomials with periodic critical points, (1991)
- J. Milnor, Dynamics in one complex variable, (1999), Vieweg Zbl0946.30013MR1721240
- J. Milnor, Local connectivity of Julia sets: expository lectures, The Mandelbrot set, theme and variations (2000), 67-116, Cambridge Univ. Press Zbl1107.37305MR1765085
- M. Rees, Views of parameter space: topographer and resident, Astérique (2003) Zbl1054.37020MR2033172
- J. Rivera Letelier, Points périodiques des fonctions rationelles dans l’espace hyperbolique -adique Zbl1140.37337
- J. Rivera Letelier, Wild recurrent critical points Zbl1130.37378
- J. Rivera Letelier, Dynamique de fractions rationnelles sur des corps locaux, (2000), Orsay
- J. Rivera Letelier, Dynamique des fonctions rationnelles sur des corps locaux, Geometric methods in dynamics. II, Astérisque (2003), 147-230 Zbl1140.37336MR2040006
- J. Rivera Letelier, Espace hyperbolique -adique et dynamique des fonctions rationnelles, Compositio Math. 138 (2003), 199-231 Zbl1041.37021MR2018827
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.