Puiseux series polynomial dynamics and iteration of complex cubic polynomials

Jan Kiwi[1]

  • [1] Facultad de Matemáticas Pontificia Universidad Católica Casilla 306, Correo 22, Santiago (Chile)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 5, page 1337-1404
  • ISSN: 0373-0956

Abstract

top
We let 𝕃 be the completion of the field of formal Puiseux series and study polynomials with coefficients in 𝕃 as dynamical systems. We give a complete description of the dynamical and parameter space of cubic polynomials in 𝕃 [ ζ ] . We show that cubic polynomial dynamics over 𝕃 and are intimately related. More precisely, we establish that some elements of 𝕃 naturally correspond to the Fourier series of analytic almost periodic functions (in the sense of Bohr) which parametrize (near infinity) the quasiconformal classes of non-renormalizable complex cubic polynomials. Our techniques are based on the ideas introduced by Branner and Hubbard to study complex cubic polynomials.

How to cite

top

Kiwi, Jan. "Puiseux series polynomial dynamics and iteration of complex cubic polynomials." Annales de l’institut Fourier 56.5 (2006): 1337-1404. <http://eudml.org/doc/10179>.

@article{Kiwi2006,
abstract = {We let $\mathbb\{L\}$ be the completion of the field of formal Puiseux series and study polynomials with coefficients in $\mathbb\{L\}$ as dynamical systems. We give a complete description of the dynamical and parameter space of cubic polynomials in $\mathbb\{L\} [\zeta ]$. We show that cubic polynomial dynamics over $\mathbb\{L\}$ and $\mathbb\{C\}$ are intimately related. More precisely, we establish that some elements of $\mathbb\{L\}$ naturally correspond to the Fourier series of analytic almost periodic functions (in the sense of Bohr) which parametrize (near infinity) the quasiconformal classes of non-renormalizable complex cubic polynomials. Our techniques are based on the ideas introduced by Branner and Hubbard to study complex cubic polynomials.},
affiliation = {Facultad de Matemáticas Pontificia Universidad Católica Casilla 306, Correo 22, Santiago (Chile)},
author = {Kiwi, Jan},
journal = {Annales de l’institut Fourier},
keywords = {Puiseux series; Julia sets; cubic polynomials},
language = {eng},
number = {5},
pages = {1337-1404},
publisher = {Association des Annales de l’institut Fourier},
title = {Puiseux series polynomial dynamics and iteration of complex cubic polynomials},
url = {http://eudml.org/doc/10179},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Kiwi, Jan
TI - Puiseux series polynomial dynamics and iteration of complex cubic polynomials
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 5
SP - 1337
EP - 1404
AB - We let $\mathbb{L}$ be the completion of the field of formal Puiseux series and study polynomials with coefficients in $\mathbb{L}$ as dynamical systems. We give a complete description of the dynamical and parameter space of cubic polynomials in $\mathbb{L} [\zeta ]$. We show that cubic polynomial dynamics over $\mathbb{L}$ and $\mathbb{C}$ are intimately related. More precisely, we establish that some elements of $\mathbb{L}$ naturally correspond to the Fourier series of analytic almost periodic functions (in the sense of Bohr) which parametrize (near infinity) the quasiconformal classes of non-renormalizable complex cubic polynomials. Our techniques are based on the ideas introduced by Branner and Hubbard to study complex cubic polynomials.
LA - eng
KW - Puiseux series; Julia sets; cubic polynomials
UR - http://eudml.org/doc/10179
ER -

References

top
  1. L. Ahlfors, Lectures on quasiconformal mappings, (1966), Van Nostrand, Princeton Zbl0138.06002MR200442
  2. M. Baker, R. Rumely, Equidistribution of Small Points, Rational Dynamics, and Potential Theory Zbl1234.11082
  3. R.-L. Benedetto, Wandering Domains and Nontrivial Reduction in Non-Archimedean Dynamics Zbl1137.11354MR2157374
  4. R.-L. Benedetto, Hyperbolic maps in p -adic dynamics, Ergodic Theory and Dynamical Systems 21 (2001), 1-11 Zbl0972.37027MR1826658
  5. R.-L. Benedetto, Examples of wandering domains in p -adic polynomial dynamics, C. R. Math. Acad. Sci. Paris 7 (2002), 615-620 Zbl1151.37314MR1941304
  6. A.-S. Besicovitch, Almost periodic functions, (1954), Dover Zbl0065.07102MR68029
  7. J.-P. Bézivin, Sur la compacité des ensembles de Julia des polynômes p –adiques, Math. Z. (2004), 273-289 Zbl1047.37031MR2031456
  8. P. Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. 11 (1984), 85-141 Zbl0558.58017MR741725
  9. B. Branner, Cubic polynomials: turning around the connectedness locus, (1993), 391-427, Publish or Perish Zbl0801.58024MR1215972
  10. B. Branner, J. H. Hubbard, The iteration of cubic polynomials. Part I: The global topology of parameter space, Acta math. 160 (1988), 143-206 Zbl0668.30008MR945011
  11. B. Branner, J. H. Hubbard, The iteration of cubic polynomials. Part II: Patterns and parapatterns, Acta math. 169 (1992), 229-325 Zbl0812.30008MR1194004
  12. E. Brieskorn, H. Knörrer, Plane algebraic curves, (1986), Birkhäuser Verlag, Basel Zbl0588.14019MR886476
  13. E. Casas-Alvero, Singularities of plane curves, LMS Lecture Notes Series 276 (2000), Cambridge University Press Zbl0967.14018MR1782072
  14. J.W.S. Cassels, Local fields, LMS student texts 3 (1986), Cambridge University Press Zbl0595.12006MR861410
  15. A. Escassut, Analytic elements in p -adic analysis, (1995), World Scientific Zbl0933.30030MR1370442
  16. A. Escassut, Ultrametric Banach Algebras, (2003), World Scientific Zbl1026.46067MR1978961
  17. C. Favre, J. Rivera Letelier, Théorème d’équidistribution de Brolin en dynamique p -adique, C. R. Math. Acad. Sci. Paris 4 (2004), 271-276 Zbl1052.37039MR2092012
  18. G. Fernandez, Componentes de Fatou errantes en dinámica p -ádica, (2004), Chile 
  19. S. Gelfand, Generalized Functions, 1 (1964), Academic Press Zbl0115.33101
  20. D. Harris, Turning curves for critically recurrent cubic polynomials, Nonlinearity 12 (1999), 411-418 Zbl0963.37040MR1677771
  21. Y. Katnelzon, An introduction to harmonic analysis, (1976), Dover Zbl0352.43001
  22. C.-T. McMullen, Complex Dynamics and Renormalization, (1994), Princeton University Press Zbl0822.30002MR1312365
  23. J. Milnor, On cubic polynomials with periodic critical points, (1991) 
  24. J. Milnor, Dynamics in one complex variable, (1999), Vieweg Zbl0946.30013MR1721240
  25. J. Milnor, Local connectivity of Julia sets: expository lectures, The Mandelbrot set, theme and variations (2000), 67-116, Cambridge Univ. Press Zbl1107.37305MR1765085
  26. M. Rees, Views of parameter space: topographer and resident, Astérique (2003) Zbl1054.37020MR2033172
  27. J. Rivera Letelier, Points périodiques des fonctions rationelles dans l’espace hyperbolique p -adique Zbl1140.37337
  28. J. Rivera Letelier, Wild recurrent critical points Zbl1130.37378
  29. J. Rivera Letelier, Dynamique de fractions rationnelles sur des corps locaux, (2000), Orsay 
  30. J. Rivera Letelier, Dynamique des fonctions rationnelles sur des corps locaux, Geometric methods in dynamics. II, Astérisque (2003), 147-230 Zbl1140.37336MR2040006
  31. J. Rivera Letelier, Espace hyperbolique p -adique et dynamique des fonctions rationnelles, Compositio Math. 138 (2003), 199-231 Zbl1041.37021MR2018827

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.