Arithmetic Fujita approximation
Annales scientifiques de l'École Normale Supérieure (2010)
- Volume: 43, Issue: 4, page 555-578
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topChen, Huayi. "Arithmetic Fujita approximation." Annales scientifiques de l'École Normale Supérieure 43.4 (2010): 555-578. <http://eudml.org/doc/272225>.
@article{Chen2010,
abstract = {We prove an arithmetic analogue of Fujita’s approximation theorem in Arakelov geometry, conjectured by Moriwaki, by using measures associated to $\mathbb \{R\}$-filtrations.},
author = {Chen, Huayi},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Fujita approximation; Arakelov geometry},
language = {eng},
number = {4},
pages = {555-578},
publisher = {Société mathématique de France},
title = {Arithmetic Fujita approximation},
url = {http://eudml.org/doc/272225},
volume = {43},
year = {2010},
}
TY - JOUR
AU - Chen, Huayi
TI - Arithmetic Fujita approximation
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 4
SP - 555
EP - 578
AB - We prove an arithmetic analogue of Fujita’s approximation theorem in Arakelov geometry, conjectured by Moriwaki, by using measures associated to $\mathbb {R}$-filtrations.
LA - eng
KW - Fujita approximation; Arakelov geometry
UR - http://eudml.org/doc/272225
ER -
References
top- [1] S. Boucksom, C. Favre & M. Jonsson, Differentiability of volumes of divisors and a problem of Teissier, J. Algebraic Geom.18 (2009), 279–308. Zbl1162.14003MR2475816
- [2] N. Bourbaki, Éléments de mathématique. Fasc. XIII. Livre VI: Intégration. Chapitres 1, 2, 3 et 4: Inégalités de convexité, espaces de Riesz, mesures sur les espaces localement compacts, prolongement d’une mesure, espaces , Hermann, 1965. Zbl0136.03404MR219684
- [3] H. Chen, Convergence des polygones de Harder-Narasimhan, to appear in Mémoires de la SMF. Zbl1208.14001MR2768967
- [4] J.-P. Demailly, L. Ein & R. Lazarsfeld, A subadditivity property of multiplier ideals, Michigan Math. J.48 (2000), 137–156. Zbl1077.14516MR1786484
- [5] L. Ein, R. Lazarsfeld, M. Mustaţǎ, M. Nakamaye & M. Popa, Asymptotic invariants of line bundles, Pure Appl. Math. Q.1 (2005), 379–403. Zbl1139.14008MR2194730
- [6] L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye & M. Popa, Restricted volumes and base loci of linear series, Amer. J. Math.131 (2009), 607–651. Zbl1179.14006MR2530849
- [7] T. Fujita, Approximating Zariski decomposition of big line bundles, Kodai Math. J.17 (1994), 1–3. Zbl0814.14006MR1262949
- [8] É. Gaudron, Pentes des fibrés vectoriels adéliques sur un corps global, Rend. Semin. Mat. Univ. Padova119 (2008), 21–95. Zbl1206.14047MR2431505
- [9] H. Gillet & C. Soulé, On the number of lattice points in convex symmetric bodies and their duals, Israel J. Math.74 (1991), 347–357. Zbl0752.52008MR1135244
- [10] R. Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse Math. Grenzg. 49, Springer, 2004. Zbl1093.14500MR2095472
- [11] R. Lazarsfeld & M. Mustață, Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér. 42 (2009), 783–835. Zbl1182.14004MR2571958
- [12] A. Moriwaki, Arithmetic height functions over finitely generated fields, Invent. Math.140 (2000), 101–142. Zbl1007.11042MR1779799
- [13] A. Moriwaki, Continuity of volumes on arithmetic varieties, J. Algebraic Geom.18 (2009), 407–457. Zbl1167.14014MR2496453
- [14] A. Moriwaki, Continuous extension of arithmetic volumes, Int. Math. Res. Not.2009 (2009), 3598–3638. Zbl1192.14022MR2539186
- [15] A. Okounkov, Brunn-Minkowski inequality for multiplicities, Invent. Math.125 (1996), 405–411. Zbl0893.52004MR1400312
- [16] R. Rumely, C. F. Lau & R. Varley, Existence of the sectional capacity, Mem. Amer. Math. Soc. 145, 2000. Zbl0987.14018MR1677934
- [17] S. Takagi, Fujita’s approximation theorem in positive characteristics, J. Math. Kyoto Univ.47 (2007), 179–202. Zbl1136.14004MR2359108
- [18] X. Yuan, Big line bundles over arithmetic varieties, Invent. Math.173 (2008), 603–649. Zbl1146.14016MR2425137
- [19] X. Yuan, On volumes of arithmetic line bundles, preprint arXiv:0811.0226. Zbl1197.14023MR2575090
- [20] O. Zariski, The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface, Ann. of Math.76 (1962), 560–615. Zbl0124.37001MR141668
- [21] S. Zhang, Positive line bundles on arithmetic varieties, J. Amer. Math. Soc.8 (1995), 187–221. Zbl0861.14018MR1254133
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.