Pentes des Fibrés Vectoriels Adéliques sur un Corps Global
Rendiconti del Seminario Matematico della Università di Padova (2008)
- Volume: 119, page 21-95
- ISSN: 0041-8994
Access Full Article
topHow to cite
topGaudron, Éric. "Pentes des Fibrés Vectoriels Adéliques sur un Corps Global." Rendiconti del Seminario Matematico della Università di Padova 119 (2008): 21-95. <http://eudml.org/doc/108735>.
@article{Gaudron2008,
author = {Gaudron, Éric},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {(Hermitian) vector bundles; slope method; global field; adele ring},
language = {fre},
pages = {21-95},
publisher = {Seminario Matematico of the University of Padua},
title = {Pentes des Fibrés Vectoriels Adéliques sur un Corps Global},
url = {http://eudml.org/doc/108735},
volume = {119},
year = {2008},
}
TY - JOUR
AU - Gaudron, Éric
TI - Pentes des Fibrés Vectoriels Adéliques sur un Corps Global
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2008
PB - Seminario Matematico of the University of Padua
VL - 119
SP - 21
EP - 95
LA - fre
KW - (Hermitian) vector bundles; slope method; global field; adele ring
UR - http://eudml.org/doc/108735
ER -
References
top- [1] W. BLASCHKE, Über affine Geometrie VII: Neue Extremeigenschaften von Ellipse und Ellipsoid. Ber. Vehr. Sächs. Akad. Wiss. Leipzig Math.-Phys. Kl, 69 (1917), pp. 306-318. JFM46.1112.06
- [2] E. BOMBIERI - J. VAALER, On Siegel's lemma. Invent. Math., 73 (1) (1983), pp. 11-32, Avec un addendum : ibid. 75(2) (1984), p. 377. Zbl0533.10030MR707346
- [3] T. BOREK, Successive minima and slopes of hermitian vector bundles over number fields. J. Number Theory, 113 (2) (2005), pp. 380-388. Zbl1100.14513MR2153282
- [4] J.-B. BOST - H. GILLET - C. SOULÉ, Heights of projective varieties and positive Green forms. J. Amer. Math. Soc., 7 (4) (1994), pp. 903-1027. Zbl0973.14013MR1260106
- [5] J.-B. BOST, Intrinsic heights of stable varieties and abelian varieties. Duke Math. J., 82 (1) (1996), pp. 21-70. Zbl0867.14010MR1387221
- [6] J.-B. BOST, Périodes et isogénies des variétés abéliennes sur les corps de nombres (d'après D. Masser et G. Wüstholz). Séminaire Bourbaki, Exp. no 795. Volume 237 d'Astérisque, pp. 115-161. Société Mathématique de France, 1996. Zbl0936.11042MR1423622
- [7] J.-B. BOST, Algebraic leaves of algebraic foliations over number fields. Publ. Math. Inst. Hautes Études Sci, 93 (2001), pp. 161-221. Zbl1034.14010MR1863738
- [8] N. BOURBAKI, Éléments de mathématiques. Fasc. XXX. Algèbre commutative. Chapitre 5 : Entiers. Chapitre 6 : Valuations. Actualités Scientifiques et Industrielles, No. 1308. Hermann (Paris), 1964. Zbl0205.34302MR194450
- [9] N. BOURBAKI, Espaces vectoriels topologiques. Chapitres 1 à 5. Éléments de mathématique. Nouvelle édition. Masson, Paris, 1981. Zbl0482.46001MR633754
- [10] J. BOURGAIN - V. MILMAN, New volume ratio properties for convex symmetric bodies in Rn . Invent. Math., 88 (2) (1987) pp. 319-340. Zbl0617.52006MR880954
- [11] A. CHAMBERT-LOIR, Points de petite hauteur sur les variétés semi-abéliennes. Ann. Sci. École Norm. Sup., 33 (6) (2000), pp. 789-821. Zbl1018.11034MR1832991
- [12] A. CHAMBERT-LOIR, Théorèmes d'algébricité en géométrie diophantienne (d'après J.-B. Bost, Y. André, D. & G. Chudnovsky). Séminaire Bourbaki, Exp. no 886. Volume 282 d'Astérisque, 175-209. Société Mathématique de France, 2002. Zbl1044.11055MR1975179
- [13] C. CHEVALLEY, Introduction to the theory of algebraic functions of one variable. Mathematical surveys, no. VI, American Mathematical Society, 1951. Zbl0045.32301MR42164
- [14] A. DEFANT - K. FLORET, Tensor norms and operator ideals, volume 176 de North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1993. Zbl0774.46018MR1209438
- [15] K. FLORET, The extension theorem for norms on symmetric tensor products of normed spaces. Recent progress in functional analysis (Valencia, 2000), volume 189 de North-Holland Math. Stud., 225-237. North-Holland, 2001. Zbl1010.46019MR1861759
- [16] É. GAUDRON, Formes linéaires de logarithmes effectives sur les variétés abéliennes. Ann. Sci. École Norm. Sup., 39 (5) (2006), pp. 699-773. Zbl1111.11038MR2292632
- [17] É. GAUDRON, Étude du cas rationnel de la théorie des formes linéaires de logarithmes. J. Number Theory, 127 (2) (2007), pp. 220-261. Zbl1197.11085MR2362434
- [18] P. GRAFTIEAUX, Formal groups and the isogeny theorem. Duke Math. J., 106 (1) (2001) pp. 81-121. Zbl1064.14045MR1810367
- [19] P. GRAFTIEAUX, Formal subgroups of abelian varieties. Invent. Math., 145 (1) (2001), pp. 1-17. Zbl1064.14047MR1839283
- [20] S. LANG, Algebraic number theory, volume 110 de Graduate Texts in Mathematics, Springer-Verlag, N. Y., 1994. Zbl0811.11001MR1282723
- [21] K. MAHLER, Ein Übertragungsprinzip für konvexe Körper. Casopis Pest. Mat. Fys., 68 (1939), pp. 93-102,. MR1242JFM65.0175.02
- [22] V. MAILLOT, Géométrie d'Arakelov des variétés toriques et fibrés en droites intégrables, volume 80 de Mémoire de la société mathématique de France, S. M. F., 2000. Zbl0963.14009
- [23] G. PISIER, The volume of convex bodies and Banach space geometry, volume 94 de Cambridge Tracts in Mathematics, Cambridge University press, 1989. Zbl0698.46008MR1036275
- [24] H. RANDRIAMBOLOLONA, Hauteurs pour les sous-schémas et exemples d'utilisation de méthodes arakeloviennes en théorie de l'approximation diophantienne, Thèse de doctorat, Université Paris XI (Orsay), janvier 2002.
- [25] R. REMMERT, Classical topics in complex function theory, volume 172 de Graduate Texts in Mathematics, Springer-Verlag, N. Y., 1998. Zbl0895.30001MR1483074
- [26] M. ROGALSKI, Sur le quotient volumique d'un espace de dimension finie, Séminaire Initiation à l'Analyse, G. Choquet, M. Rogalski, J. Saint-Raymond, 20e année, 1980/81, no. 3. Volume 46 de Publ. Math. univ. Pierre et Marie Curie, Paris VI. Zbl0517.46014MR670807
- [27] D. ROY - J.L. THUNDER, An absolute Siegel's lemma. J. Reine angew. Math., 476 (1996), pp. 1-26. Addendum et erratum, ibid., 508 (1999), 47-51. Zbl0910.11028
- [28] R. RUMELY - C.F. LAU - R. VARLEY, Existence of the sectional capacity, volume 145, n. 690, de Memoirs of the American Mathematical Society, A.M.S., 2000. Zbl0987.14018MR1677934
- [29] R.A. RYAN, Introduction to tensor products of Banach spaces. Springer Monographs in Math. Springer-Verlag London Ltd., 2002. Zbl1090.46001MR1888309
- [30] J. SAINT-RAYMOND, Sur le volume des corps convexes symétriques, Séminaire Initiation à l'Analyse, G. Choquet, M. Rogalski, J. Saint-Raymond, 20e année, 1980/81, no. 11. Volume 46 de Publ. Math. univ. Pierre et Marie Curie, Paris VI. Zbl0531.52006MR670798
- [31] L.A. SANTALÓ, Un invariante afin para los cuerpos convexos del espacio de n dimensiones. Portugal Math., 8 (1949), pp. 155-161. Zbl0038.35702
- [32] W.M. SCHMIDT, A remark on the heights of subspaces. A tribute to Paul Erdös, pp. 359-360. Cambridge Univ. Press, 1990. Zbl0714.11022MR1117028
- [33] R. SCHNEIDER, Convex bodies: the Brunn-Minkowski theory, volume 44 de Enyclopedia of mathematics and its applications, Cambridge University Press, 1993. Zbl0798.52001MR1216521
- [34] C. SOULÉ, Successive minima on arithmetic varieties. Compositio Math., 96 (1) (1995), pp. 85-98. Zbl0871.14019MR1323726
- [35] T. STRUPPECK - J.D. VAALER, Inequalities for heights of algebraic subspaces and the Thue-Siegel principle. Analytic number theory (Allerton Park, IL, 1989), volume 85 de Progress in Math., 493-528. Birkhäuser Boston, 1990. Zbl0722.11033MR1084199
- [36] L. SZPIRO, Degrés, intersections, hauteurs. Séminaire sur les pinceaux arithmétiques : la conjecture de Mordell, volume 127 d'Astérique, 11-28. Société Mathématique de France, 1985. MR801917
- [37] A.C. THOMPSON, Minkowski geometry, volume 63 de Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1996. Zbl0868.52001MR1406315
- [38] J.L. THUNDER, An adelic Minkowski-Hlawka theorem and an application to Siegel's lemma. J. reine angew Math., 475 (1996), pp. 167-185. Zbl0858.11034MR1396731
- [39] E. VIADA, Slopes and abelian subvariety theorem. J. Number Theory, 112 (1) (2005) pp. 67-115. Zbl1080.11048MR2131141
- [40] A. WEIL, Basic number theory, Seconde édition de 1973 publiée dans Classics in Mathematics, Springer-Verlag, Berlin, 1995. Zbl0823.11001MR1344916
- [41] S. ZHANG, Positive line bundles on arithmetic varieties. J. Amer. Math. Soc., 8 (1) (1995), pp. 187-221. Zbl0861.14018MR1254133
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.