Pentes des Fibrés Vectoriels Adéliques sur un Corps Global

Éric Gaudron

Rendiconti del Seminario Matematico della Università di Padova (2008)

  • Volume: 119, page 21-95
  • ISSN: 0041-8994

How to cite

top

Gaudron, Éric. "Pentes des Fibrés Vectoriels Adéliques sur un Corps Global." Rendiconti del Seminario Matematico della Università di Padova 119 (2008): 21-95. <http://eudml.org/doc/108735>.

@article{Gaudron2008,
author = {Gaudron, Éric},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {(Hermitian) vector bundles; slope method; global field; adele ring},
language = {fre},
pages = {21-95},
publisher = {Seminario Matematico of the University of Padua},
title = {Pentes des Fibrés Vectoriels Adéliques sur un Corps Global},
url = {http://eudml.org/doc/108735},
volume = {119},
year = {2008},
}

TY - JOUR
AU - Gaudron, Éric
TI - Pentes des Fibrés Vectoriels Adéliques sur un Corps Global
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2008
PB - Seminario Matematico of the University of Padua
VL - 119
SP - 21
EP - 95
LA - fre
KW - (Hermitian) vector bundles; slope method; global field; adele ring
UR - http://eudml.org/doc/108735
ER -

References

top
  1. [1] W. BLASCHKE, Über affine Geometrie VII: Neue Extremeigenschaften von Ellipse und Ellipsoid. Ber. Vehr. Sächs. Akad. Wiss. Leipzig Math.-Phys. Kl, 69 (1917), pp. 306-318. JFM46.1112.06
  2. [2] E. BOMBIERI - J. VAALER, On Siegel's lemma. Invent. Math., 73 (1) (1983), pp. 11-32, Avec un addendum : ibid. 75(2) (1984), p. 377. Zbl0533.10030MR707346
  3. [3] T. BOREK, Successive minima and slopes of hermitian vector bundles over number fields. J. Number Theory, 113 (2) (2005), pp. 380-388. Zbl1100.14513MR2153282
  4. [4] J.-B. BOST - H. GILLET - C. SOULÉ, Heights of projective varieties and positive Green forms. J. Amer. Math. Soc., 7 (4) (1994), pp. 903-1027. Zbl0973.14013MR1260106
  5. [5] J.-B. BOST, Intrinsic heights of stable varieties and abelian varieties. Duke Math. J., 82 (1) (1996), pp. 21-70. Zbl0867.14010MR1387221
  6. [6] J.-B. BOST, Périodes et isogénies des variétés abéliennes sur les corps de nombres (d'après D. Masser et G. Wüstholz). Séminaire Bourbaki, Exp. no 795. Volume 237 d'Astérisque, pp. 115-161. Société Mathématique de France, 1996. Zbl0936.11042MR1423622
  7. [7] J.-B. BOST, Algebraic leaves of algebraic foliations over number fields. Publ. Math. Inst. Hautes Études Sci, 93 (2001), pp. 161-221. Zbl1034.14010MR1863738
  8. [8] N. BOURBAKI, Éléments de mathématiques. Fasc. XXX. Algèbre commutative. Chapitre 5 : Entiers. Chapitre 6 : Valuations. Actualités Scientifiques et Industrielles, No. 1308. Hermann (Paris), 1964. Zbl0205.34302MR194450
  9. [9] N. BOURBAKI, Espaces vectoriels topologiques. Chapitres 1 à 5. Éléments de mathématique. Nouvelle édition. Masson, Paris, 1981. Zbl0482.46001MR633754
  10. [10] J. BOURGAIN - V. MILMAN, New volume ratio properties for convex symmetric bodies in Rn . Invent. Math., 88 (2) (1987) pp. 319-340. Zbl0617.52006MR880954
  11. [11] A. CHAMBERT-LOIR, Points de petite hauteur sur les variétés semi-abéliennes. Ann. Sci. École Norm. Sup., 33 (6) (2000), pp. 789-821. Zbl1018.11034MR1832991
  12. [12] A. CHAMBERT-LOIR, Théorèmes d'algébricité en géométrie diophantienne (d'après J.-B. Bost, Y. André, D. & G. Chudnovsky). Séminaire Bourbaki, Exp. no 886. Volume 282 d'Astérisque, 175-209. Société Mathématique de France, 2002. Zbl1044.11055MR1975179
  13. [13] C. CHEVALLEY, Introduction to the theory of algebraic functions of one variable. Mathematical surveys, no. VI, American Mathematical Society, 1951. Zbl0045.32301MR42164
  14. [14] A. DEFANT - K. FLORET, Tensor norms and operator ideals, volume 176 de North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1993. Zbl0774.46018MR1209438
  15. [15] K. FLORET, The extension theorem for norms on symmetric tensor products of normed spaces. Recent progress in functional analysis (Valencia, 2000), volume 189 de North-Holland Math. Stud., 225-237. North-Holland, 2001. Zbl1010.46019MR1861759
  16. [16] É. GAUDRON, Formes linéaires de logarithmes effectives sur les variétés abéliennes. Ann. Sci. École Norm. Sup., 39 (5) (2006), pp. 699-773. Zbl1111.11038MR2292632
  17. [17] É. GAUDRON, Étude du cas rationnel de la théorie des formes linéaires de logarithmes. J. Number Theory, 127 (2) (2007), pp. 220-261. Zbl1197.11085MR2362434
  18. [18] P. GRAFTIEAUX, Formal groups and the isogeny theorem. Duke Math. J., 106 (1) (2001) pp. 81-121. Zbl1064.14045MR1810367
  19. [19] P. GRAFTIEAUX, Formal subgroups of abelian varieties. Invent. Math., 145 (1) (2001), pp. 1-17. Zbl1064.14047MR1839283
  20. [20] S. LANG, Algebraic number theory, volume 110 de Graduate Texts in Mathematics, Springer-Verlag, N. Y., 1994. Zbl0811.11001MR1282723
  21. [21] K. MAHLER, Ein Übertragungsprinzip für konvexe Körper. Casopis Pest. Mat. Fys., 68 (1939), pp. 93-102,. MR1242JFM65.0175.02
  22. [22] V. MAILLOT, Géométrie d'Arakelov des variétés toriques et fibrés en droites intégrables, volume 80 de Mémoire de la société mathématique de France, S. M. F., 2000. Zbl0963.14009
  23. [23] G. PISIER, The volume of convex bodies and Banach space geometry, volume 94 de Cambridge Tracts in Mathematics, Cambridge University press, 1989. Zbl0698.46008MR1036275
  24. [24] H. RANDRIAMBOLOLONA, Hauteurs pour les sous-schémas et exemples d'utilisation de méthodes arakeloviennes en théorie de l'approximation diophantienne, Thèse de doctorat, Université Paris XI (Orsay), janvier 2002. 
  25. [25] R. REMMERT, Classical topics in complex function theory, volume 172 de Graduate Texts in Mathematics, Springer-Verlag, N. Y., 1998. Zbl0895.30001MR1483074
  26. [26] M. ROGALSKI, Sur le quotient volumique d'un espace de dimension finie, Séminaire Initiation à l'Analyse, G. Choquet, M. Rogalski, J. Saint-Raymond, 20e année, 1980/81, no. 3. Volume 46 de Publ. Math. univ. Pierre et Marie Curie, Paris VI. Zbl0517.46014MR670807
  27. [27] D. ROY - J.L. THUNDER, An absolute Siegel's lemma. J. Reine angew. Math., 476 (1996), pp. 1-26. Addendum et erratum, ibid., 508 (1999), 47-51. Zbl0910.11028
  28. [28] R. RUMELY - C.F. LAU - R. VARLEY, Existence of the sectional capacity, volume 145, n. 690, de Memoirs of the American Mathematical Society, A.M.S., 2000. Zbl0987.14018MR1677934
  29. [29] R.A. RYAN, Introduction to tensor products of Banach spaces. Springer Monographs in Math. Springer-Verlag London Ltd., 2002. Zbl1090.46001MR1888309
  30. [30] J. SAINT-RAYMOND, Sur le volume des corps convexes symétriques, Séminaire Initiation à l'Analyse, G. Choquet, M. Rogalski, J. Saint-Raymond, 20e année, 1980/81, no. 11. Volume 46 de Publ. Math. univ. Pierre et Marie Curie, Paris VI. Zbl0531.52006MR670798
  31. [31] L.A. SANTALÓ, Un invariante afin para los cuerpos convexos del espacio de n dimensiones. Portugal Math., 8 (1949), pp. 155-161. Zbl0038.35702
  32. [32] W.M. SCHMIDT, A remark on the heights of subspaces. A tribute to Paul Erdös, pp. 359-360. Cambridge Univ. Press, 1990. Zbl0714.11022MR1117028
  33. [33] R. SCHNEIDER, Convex bodies: the Brunn-Minkowski theory, volume 44 de Enyclopedia of mathematics and its applications, Cambridge University Press, 1993. Zbl0798.52001MR1216521
  34. [34] C. SOULÉ, Successive minima on arithmetic varieties. Compositio Math., 96 (1) (1995), pp. 85-98. Zbl0871.14019MR1323726
  35. [35] T. STRUPPECK - J.D. VAALER, Inequalities for heights of algebraic subspaces and the Thue-Siegel principle. Analytic number theory (Allerton Park, IL, 1989), volume 85 de Progress in Math., 493-528. Birkhäuser Boston, 1990. Zbl0722.11033MR1084199
  36. [36] L. SZPIRO, Degrés, intersections, hauteurs. Séminaire sur les pinceaux arithmétiques : la conjecture de Mordell, volume 127 d'Astérique, 11-28. Société Mathématique de France, 1985. MR801917
  37. [37] A.C. THOMPSON, Minkowski geometry, volume 63 de Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1996. Zbl0868.52001MR1406315
  38. [38] J.L. THUNDER, An adelic Minkowski-Hlawka theorem and an application to Siegel's lemma. J. reine angew Math., 475 (1996), pp. 167-185. Zbl0858.11034MR1396731
  39. [39] E. VIADA, Slopes and abelian subvariety theorem. J. Number Theory, 112 (1) (2005) pp. 67-115. Zbl1080.11048MR2131141
  40. [40] A. WEIL, Basic number theory, Seconde édition de 1973 publiée dans Classics in Mathematics, Springer-Verlag, Berlin, 1995. Zbl0823.11001MR1344916
  41. [41] S. ZHANG, Positive line bundles on arithmetic varieties. J. Amer. Math. Soc., 8 (1) (1995), pp. 187-221. Zbl0861.14018MR1254133

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.