Tautological relations and the r -spin Witten conjecture

Carel Faber; Sergey Shadrin; Dimitri Zvonkine

Annales scientifiques de l'École Normale Supérieure (2010)

  • Volume: 43, Issue: 4, page 621-658
  • ISSN: 0012-9593

Abstract

top
In [11], A. Givental introduced a group action on the space of Gromov–Witten potentials and proved its transitivity on the semi-simple potentials. In [24, 25], Y.-P. Lee showed, modulo certain results announced by C. Teleman, that this action respects the tautological relations in the cohomology ring of the moduli space ¯ g , n of stable pointed curves. Here we give a simpler proof of this result. In particular, it implies that in any semi-simple Gromov–Witten theory where arbitrary correlators can be expressed in genus 0 correlators using only tautological relations, the geometric Gromov–Witten potential coincides with the potential constructed via Givental’s group action. As the most important application we show that our results suffice to deduce the statement of a 1991 Witten conjecture relating the r -KdV hierarchy to the intersection theory on the space of r -spin structures on stable curves. We use the fact that Givental’s construction is, in this case, compatible with Witten’s conjecture, as Givental himself showed in [10].

How to cite

top

Faber, Carel, Shadrin, Sergey, and Zvonkine, Dimitri. "Tautological relations and the $r$-spin Witten conjecture." Annales scientifiques de l'École Normale Supérieure 43.4 (2010): 621-658. <http://eudml.org/doc/272233>.

@article{Faber2010,
abstract = {In [11], A. Givental introduced a group action on the space of Gromov–Witten potentials and proved its transitivity on the semi-simple potentials. In [24, 25], Y.-P. Lee showed, modulo certain results announced by C. Teleman, that this action respects the tautological relations in the cohomology ring of the moduli space $\{\overline\{\mathcal \{M\}\}\}_\{g,n\}$ of stable pointed curves. Here we give a simpler proof of this result. In particular, it implies that in any semi-simple Gromov–Witten theory where arbitrary correlators can be expressed in genus 0 correlators using only tautological relations, the geometric Gromov–Witten potential coincides with the potential constructed via Givental’s group action. As the most important application we show that our results suffice to deduce the statement of a 1991 Witten conjecture relating the $r$-KdV hierarchy to the intersection theory on the space of $r$-spin structures on stable curves. We use the fact that Givental’s construction is, in this case, compatible with Witten’s conjecture, as Givental himself showed in [10].},
author = {Faber, Carel, Shadrin, Sergey, Zvonkine, Dimitri},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {quantization of Frobenius manifolds; Gromov–Witten potential; moduli of curves; $r$-spin structures; Witten’s conjecture},
language = {eng},
number = {4},
pages = {621-658},
publisher = {Société mathématique de France},
title = {Tautological relations and the $r$-spin Witten conjecture},
url = {http://eudml.org/doc/272233},
volume = {43},
year = {2010},
}

TY - JOUR
AU - Faber, Carel
AU - Shadrin, Sergey
AU - Zvonkine, Dimitri
TI - Tautological relations and the $r$-spin Witten conjecture
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 4
SP - 621
EP - 658
AB - In [11], A. Givental introduced a group action on the space of Gromov–Witten potentials and proved its transitivity on the semi-simple potentials. In [24, 25], Y.-P. Lee showed, modulo certain results announced by C. Teleman, that this action respects the tautological relations in the cohomology ring of the moduli space ${\overline{\mathcal {M}}}_{g,n}$ of stable pointed curves. Here we give a simpler proof of this result. In particular, it implies that in any semi-simple Gromov–Witten theory where arbitrary correlators can be expressed in genus 0 correlators using only tautological relations, the geometric Gromov–Witten potential coincides with the potential constructed via Givental’s group action. As the most important application we show that our results suffice to deduce the statement of a 1991 Witten conjecture relating the $r$-KdV hierarchy to the intersection theory on the space of $r$-spin structures on stable curves. We use the fact that Givental’s construction is, in this case, compatible with Witten’s conjecture, as Givental himself showed in [10].
LA - eng
KW - quantization of Frobenius manifolds; Gromov–Witten potential; moduli of curves; $r$-spin structures; Witten’s conjecture
UR - http://eudml.org/doc/272233
ER -

References

top
  1. [1] D. Abramovich & T. J. Jarvis, Moduli of twisted spin curves, Proc. Amer. Math. Soc. 131 (2003), 685–699 (electronic). Zbl1037.14008MR1937405
  2. [2] L. Caporaso, C. Casagrande & M. Cornalba, Moduli of roots of line bundles on curves, Trans. Amer. Math. Soc. 359 (2007), 3733–3768 (electronic). Zbl1140.14022MR2302513
  3. [3] A. Chiodo, The Witten top Chern class via K -theory, J. Algebraic Geom.15 (2006), 681–707. Zbl1117.14008MR2237266
  4. [4] A. Chiodo, Stable twisted curves and their r -spin structures, preprint arXiv:math.AG/0603687. Zbl1179.14028MR2445829
  5. [5] B. Dubrovin & Y. Zhang, Bi-Hamiltonian hierarchies in 2 D topological field theory at one-loop approximation, Comm. Math. Phys.198 (1998), 311–361. Zbl0923.58060MR1672512
  6. [6] C. Faber & R. Pandharipande, Logarithmic series and Hodge integrals in the tautological ring, Michigan Math. J.48 (2000), 215–252. Zbl1090.14005MR1786488
  7. [7] C. Faber & R. Pandharipande, Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS) 7 (2005), 13–49. Zbl1084.14054MR2120989
  8. [8] A. B. Givental, Semisimple Frobenius structures at higher genus, Int. Math. Res. Not.2001 (2001), 1265–1286. Zbl1074.14532MR1866444
  9. [9] A. B. Givental, Symplectic geometry of Frobenius structures, Mosc. Math. J.1 (2001), 551–568. Zbl1008.53072
  10. [10] A. B. Givental, A n - 1 singularities and n KdV hierarchies, Mosc. Math. J. 3 (2003), 475–505, 743. Zbl1054.14067MR2025270
  11. [11] A. B. Givental, Gromov-Witten invariants and quantization of quadratic hamiltonians, in Frobenius manifolds, Aspects Math. E36, Vieweg, 2004, 91–112. Zbl1008.53072
  12. [12] T. Graber & R. Pandharipande, Constructions of nontautological classes on moduli spaces of curves, Michigan Math. J.51 (2003), 93–109. Zbl1079.14511MR1960923
  13. [13] T. Graber & R. Vakil, On the tautological ring of ¯ g , n , Turkish J. Math.25 (2001), 237–243. Zbl1040.14007MR1829089
  14. [14] R. Hain & E. Looijenga, Mapping class groups and moduli spaces of curves, in Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math. 62, Amer. Math. Soc., 1997, 97–142. Zbl0914.14013MR1492535
  15. [15] E.-N. Ionel, Topological recursive relations in H 2 g ( g , n ) , Invent. Math.148 (2002), 627–658. Zbl1056.14076MR1908062
  16. [16] T. J. Jarvis, Geometry of the moduli of higher spin curves, Internat. J. Math.11 (2000), 637–663. Zbl1094.14504MR1780734
  17. [17] T. J. Jarvis, T. Kimura & A. Vaintrob, Tensor products of Frobenius manifolds and moduli spaces of higher spin curves, in Conférence Moshé Flato 1999, Vol. II (Dijon), Math. Phys. Stud. 22, Kluwer Acad. Publ., 2000, 145–166. Zbl0988.81120MR1805911
  18. [18] T. J. Jarvis, T. Kimura & A. Vaintrob, Gravitational descendants and the moduli space of higher spin curves, in Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), Contemp. Math. 276, Amer. Math. Soc., 2001, 167–177. Zbl0986.81105MR1837117
  19. [19] T. J. Jarvis, T. Kimura & A. Vaintrob, Moduli spaces of higher spin curves and integrable hierarchies, Compositio Math.126 (2001), 157–212. Zbl1015.14028MR1827643
  20. [20] T. J. Jarvis, T. Kimura & A. Vaintrob, Spin Gromov-Witten invariants, Comm. Math. Phys.259 (2005), 511–543. Zbl1094.14042MR2174415
  21. [21] M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys.147 (1992), 1–23. Zbl0756.35081MR1171758
  22. [22] M. Kontsevich & Y. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys.164 (1994), 525–562. Zbl0853.14020MR1291244
  23. [23] Y.-P. Lee, Witten’s conjecture and the Virasoro conjecture for genus up to two, in Gromov-Witten theory of spin curves and orbifolds, Contemp. Math. 403, Amer. Math. Soc., 2006, 31–42. Zbl1114.14034MR2234883
  24. [24] Y.-P. Lee, Invariance of tautological equations. I. Conjectures and applications, J. Eur. Math. Soc. (JEMS) 10 (2008), 399–413. Zbl1170.14021MR2390329
  25. [25] Y.-P. Lee, Invariance of tautological equations. II. Gromov-Witten theory, J. Amer. Math. Soc. 22 (2009), 331–352. Zbl1206.14078MR2476776
  26. [26] Y.-P. Lee, Witten’s conjecture, Virasoro conjecture, and invariance of tautological equations, preprint arXiv:math.AG/0311100. Zbl1206.14078MR2234883
  27. [27] Y.-P. Lee & R. Pandharipande, Frobenius manifolds, Gromov-Witten theory, and Virasoro constraints, preprint http://www.math.princeton.edu/~rahulp/Part1.ps and http://www.math.princeton.edu/~rahulp/Part2.ps. 
  28. [28] T. Mochizuki, The virtual class of the moduli stack of stable r -spin curves, Comm. Math. Phys.264 (2006), 1–40. Zbl1136.14015MR2211733
  29. [29] D. Mumford, Towards an enumerative geometry of the moduli space of curves, in Arithmetic and geometry, Vol. II, Progr. Math. 36, Birkhäuser, 1983, 271–328. Zbl0554.14008MR717614
  30. [30] A. Polishchuk, Witten’s top Chern class on the moduli space of higher spin curves, in Frobenius manifolds, Aspects Math., E36, Vieweg, 2004, 253–264. Zbl1105.14010MR2115773
  31. [31] A. Polishchuk & A. Vaintrob, Algebraic construction of Witten’s top Chern class, in Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), Contemp. Math. 276, Amer. Math. Soc., 2001, 229–249. Zbl1051.14007MR1837120
  32. [32] S. Shadrin, Geometry of meromorphic functions and intersections on moduli spaces of curves, Int. Math. Res. Not.2003 (2003), 2051–2094. Zbl1070.14030MR1994776
  33. [33] S. Shadrin, Intersections in genus 3 and the Boussinesq hierarchy, Lett. Math. Phys.65 (2003), 125–131. Zbl1048.37060MR2022125
  34. [34] S. Shadrin & D. Zvonkine, Intersection numbers with Witten’s top Chern class, Geom. Topol.12 (2008), 713–745. Zbl1141.14012MR2403799
  35. [35] E. Witten, Algebraic geometry associated with matrix models of two-dimensional gravity, in Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, 1993, 235–269. Zbl0812.14017MR1215968

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.