Tautological relations and the -spin Witten conjecture
Carel Faber; Sergey Shadrin; Dimitri Zvonkine
Annales scientifiques de l'École Normale Supérieure (2010)
- Volume: 43, Issue: 4, page 621-658
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] D. Abramovich & T. J. Jarvis, Moduli of twisted spin curves, Proc. Amer. Math. Soc. 131 (2003), 685–699 (electronic). Zbl1037.14008MR1937405
- [2] L. Caporaso, C. Casagrande & M. Cornalba, Moduli of roots of line bundles on curves, Trans. Amer. Math. Soc. 359 (2007), 3733–3768 (electronic). Zbl1140.14022MR2302513
- [3] A. Chiodo, The Witten top Chern class via -theory, J. Algebraic Geom.15 (2006), 681–707. Zbl1117.14008MR2237266
- [4] A. Chiodo, Stable twisted curves and their -spin structures, preprint arXiv:math.AG/0603687. Zbl1179.14028MR2445829
- [5] B. Dubrovin & Y. Zhang, Bi-Hamiltonian hierarchies in D topological field theory at one-loop approximation, Comm. Math. Phys.198 (1998), 311–361. Zbl0923.58060MR1672512
- [6] C. Faber & R. Pandharipande, Logarithmic series and Hodge integrals in the tautological ring, Michigan Math. J.48 (2000), 215–252. Zbl1090.14005MR1786488
- [7] C. Faber & R. Pandharipande, Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS) 7 (2005), 13–49. Zbl1084.14054MR2120989
- [8] A. B. Givental, Semisimple Frobenius structures at higher genus, Int. Math. Res. Not.2001 (2001), 1265–1286. Zbl1074.14532MR1866444
- [9] A. B. Givental, Symplectic geometry of Frobenius structures, Mosc. Math. J.1 (2001), 551–568. Zbl1008.53072
- [10] A. B. Givental, singularities and KdV hierarchies, Mosc. Math. J. 3 (2003), 475–505, 743. Zbl1054.14067MR2025270
- [11] A. B. Givental, Gromov-Witten invariants and quantization of quadratic hamiltonians, in Frobenius manifolds, Aspects Math. E36, Vieweg, 2004, 91–112. Zbl1008.53072
- [12] T. Graber & R. Pandharipande, Constructions of nontautological classes on moduli spaces of curves, Michigan Math. J.51 (2003), 93–109. Zbl1079.14511MR1960923
- [13] T. Graber & R. Vakil, On the tautological ring of , Turkish J. Math.25 (2001), 237–243. Zbl1040.14007MR1829089
- [14] R. Hain & E. Looijenga, Mapping class groups and moduli spaces of curves, in Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math. 62, Amer. Math. Soc., 1997, 97–142. Zbl0914.14013MR1492535
- [15] E.-N. Ionel, Topological recursive relations in , Invent. Math.148 (2002), 627–658. Zbl1056.14076MR1908062
- [16] T. J. Jarvis, Geometry of the moduli of higher spin curves, Internat. J. Math.11 (2000), 637–663. Zbl1094.14504MR1780734
- [17] T. J. Jarvis, T. Kimura & A. Vaintrob, Tensor products of Frobenius manifolds and moduli spaces of higher spin curves, in Conférence Moshé Flato 1999, Vol. II (Dijon), Math. Phys. Stud. 22, Kluwer Acad. Publ., 2000, 145–166. Zbl0988.81120MR1805911
- [18] T. J. Jarvis, T. Kimura & A. Vaintrob, Gravitational descendants and the moduli space of higher spin curves, in Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), Contemp. Math. 276, Amer. Math. Soc., 2001, 167–177. Zbl0986.81105MR1837117
- [19] T. J. Jarvis, T. Kimura & A. Vaintrob, Moduli spaces of higher spin curves and integrable hierarchies, Compositio Math.126 (2001), 157–212. Zbl1015.14028MR1827643
- [20] T. J. Jarvis, T. Kimura & A. Vaintrob, Spin Gromov-Witten invariants, Comm. Math. Phys.259 (2005), 511–543. Zbl1094.14042MR2174415
- [21] M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys.147 (1992), 1–23. Zbl0756.35081MR1171758
- [22] M. Kontsevich & Y. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys.164 (1994), 525–562. Zbl0853.14020MR1291244
- [23] Y.-P. Lee, Witten’s conjecture and the Virasoro conjecture for genus up to two, in Gromov-Witten theory of spin curves and orbifolds, Contemp. Math. 403, Amer. Math. Soc., 2006, 31–42. Zbl1114.14034MR2234883
- [24] Y.-P. Lee, Invariance of tautological equations. I. Conjectures and applications, J. Eur. Math. Soc. (JEMS) 10 (2008), 399–413. Zbl1170.14021MR2390329
- [25] Y.-P. Lee, Invariance of tautological equations. II. Gromov-Witten theory, J. Amer. Math. Soc. 22 (2009), 331–352. Zbl1206.14078MR2476776
- [26] Y.-P. Lee, Witten’s conjecture, Virasoro conjecture, and invariance of tautological equations, preprint arXiv:math.AG/0311100. Zbl1206.14078MR2234883
- [27] Y.-P. Lee & R. Pandharipande, Frobenius manifolds, Gromov-Witten theory, and Virasoro constraints, preprint http://www.math.princeton.edu/~rahulp/Part1.ps and http://www.math.princeton.edu/~rahulp/Part2.ps.
- [28] T. Mochizuki, The virtual class of the moduli stack of stable -spin curves, Comm. Math. Phys.264 (2006), 1–40. Zbl1136.14015MR2211733
- [29] D. Mumford, Towards an enumerative geometry of the moduli space of curves, in Arithmetic and geometry, Vol. II, Progr. Math. 36, Birkhäuser, 1983, 271–328. Zbl0554.14008MR717614
- [30] A. Polishchuk, Witten’s top Chern class on the moduli space of higher spin curves, in Frobenius manifolds, Aspects Math., E36, Vieweg, 2004, 253–264. Zbl1105.14010MR2115773
- [31] A. Polishchuk & A. Vaintrob, Algebraic construction of Witten’s top Chern class, in Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), Contemp. Math. 276, Amer. Math. Soc., 2001, 229–249. Zbl1051.14007MR1837120
- [32] S. Shadrin, Geometry of meromorphic functions and intersections on moduli spaces of curves, Int. Math. Res. Not.2003 (2003), 2051–2094. Zbl1070.14030MR1994776
- [33] S. Shadrin, Intersections in genus 3 and the Boussinesq hierarchy, Lett. Math. Phys.65 (2003), 125–131. Zbl1048.37060MR2022125
- [34] S. Shadrin & D. Zvonkine, Intersection numbers with Witten’s top Chern class, Geom. Topol.12 (2008), 713–745. Zbl1141.14012MR2403799
- [35] E. Witten, Algebraic geometry associated with matrix models of two-dimensional gravity, in Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, 1993, 235–269. Zbl0812.14017MR1215968