# Tautological relations and the $r$-spin Witten conjecture

Carel Faber; Sergey Shadrin; Dimitri Zvonkine

Annales scientifiques de l'École Normale Supérieure (2010)

- Volume: 43, Issue: 4, page 621-658
- ISSN: 0012-9593

## Access Full Article

top## Abstract

top## How to cite

topFaber, Carel, Shadrin, Sergey, and Zvonkine, Dimitri. "Tautological relations and the $r$-spin Witten conjecture." Annales scientifiques de l'École Normale Supérieure 43.4 (2010): 621-658. <http://eudml.org/doc/272233>.

@article{Faber2010,

abstract = {In [11], A. Givental introduced a group action on the space of Gromov–Witten potentials and proved its transitivity on the semi-simple potentials. In [24, 25], Y.-P. Lee showed, modulo certain results announced by C. Teleman, that this action respects the tautological relations in the cohomology ring of the moduli space $\{\overline\{\mathcal \{M\}\}\}_\{g,n\}$ of stable pointed curves.
Here we give a simpler proof of this result. In particular, it implies that in any semi-simple Gromov–Witten theory where arbitrary correlators can be expressed in genus 0 correlators using only tautological relations, the geometric Gromov–Witten potential coincides with the potential constructed via Givental’s group action.
As the most important application we show that our results suffice to deduce the statement of a 1991 Witten conjecture relating the $r$-KdV hierarchy to the intersection theory on the space of $r$-spin structures on stable curves. We use the fact that Givental’s construction is, in this case, compatible with Witten’s conjecture, as Givental himself showed in [10].},

author = {Faber, Carel, Shadrin, Sergey, Zvonkine, Dimitri},

journal = {Annales scientifiques de l'École Normale Supérieure},

keywords = {quantization of Frobenius manifolds; Gromov–Witten potential; moduli of curves; $r$-spin structures; Witten’s conjecture},

language = {eng},

number = {4},

pages = {621-658},

publisher = {Société mathématique de France},

title = {Tautological relations and the $r$-spin Witten conjecture},

url = {http://eudml.org/doc/272233},

volume = {43},

year = {2010},

}

TY - JOUR

AU - Faber, Carel

AU - Shadrin, Sergey

AU - Zvonkine, Dimitri

TI - Tautological relations and the $r$-spin Witten conjecture

JO - Annales scientifiques de l'École Normale Supérieure

PY - 2010

PB - Société mathématique de France

VL - 43

IS - 4

SP - 621

EP - 658

AB - In [11], A. Givental introduced a group action on the space of Gromov–Witten potentials and proved its transitivity on the semi-simple potentials. In [24, 25], Y.-P. Lee showed, modulo certain results announced by C. Teleman, that this action respects the tautological relations in the cohomology ring of the moduli space ${\overline{\mathcal {M}}}_{g,n}$ of stable pointed curves.
Here we give a simpler proof of this result. In particular, it implies that in any semi-simple Gromov–Witten theory where arbitrary correlators can be expressed in genus 0 correlators using only tautological relations, the geometric Gromov–Witten potential coincides with the potential constructed via Givental’s group action.
As the most important application we show that our results suffice to deduce the statement of a 1991 Witten conjecture relating the $r$-KdV hierarchy to the intersection theory on the space of $r$-spin structures on stable curves. We use the fact that Givental’s construction is, in this case, compatible with Witten’s conjecture, as Givental himself showed in [10].

LA - eng

KW - quantization of Frobenius manifolds; Gromov–Witten potential; moduli of curves; $r$-spin structures; Witten’s conjecture

UR - http://eudml.org/doc/272233

ER -

## References

top- [1] D. Abramovich & T. J. Jarvis, Moduli of twisted spin curves, Proc. Amer. Math. Soc. 131 (2003), 685–699 (electronic). Zbl1037.14008MR1937405
- [2] L. Caporaso, C. Casagrande & M. Cornalba, Moduli of roots of line bundles on curves, Trans. Amer. Math. Soc. 359 (2007), 3733–3768 (electronic). Zbl1140.14022MR2302513
- [3] A. Chiodo, The Witten top Chern class via $K$-theory, J. Algebraic Geom.15 (2006), 681–707. Zbl1117.14008MR2237266
- [4] A. Chiodo, Stable twisted curves and their $r$-spin structures, preprint arXiv:math.AG/0603687. Zbl1179.14028MR2445829
- [5] B. Dubrovin & Y. Zhang, Bi-Hamiltonian hierarchies in $2$D topological field theory at one-loop approximation, Comm. Math. Phys.198 (1998), 311–361. Zbl0923.58060MR1672512
- [6] C. Faber & R. Pandharipande, Logarithmic series and Hodge integrals in the tautological ring, Michigan Math. J.48 (2000), 215–252. Zbl1090.14005MR1786488
- [7] C. Faber & R. Pandharipande, Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS) 7 (2005), 13–49. Zbl1084.14054MR2120989
- [8] A. B. Givental, Semisimple Frobenius structures at higher genus, Int. Math. Res. Not.2001 (2001), 1265–1286. Zbl1074.14532MR1866444
- [9] A. B. Givental, Symplectic geometry of Frobenius structures, Mosc. Math. J.1 (2001), 551–568. Zbl1008.53072
- [10] A. B. Givental, ${A}_{n-1}$ singularities and $n$KdV hierarchies, Mosc. Math. J. 3 (2003), 475–505, 743. Zbl1054.14067MR2025270
- [11] A. B. Givental, Gromov-Witten invariants and quantization of quadratic hamiltonians, in Frobenius manifolds, Aspects Math. E36, Vieweg, 2004, 91–112. Zbl1008.53072
- [12] T. Graber & R. Pandharipande, Constructions of nontautological classes on moduli spaces of curves, Michigan Math. J.51 (2003), 93–109. Zbl1079.14511MR1960923
- [13] T. Graber & R. Vakil, On the tautological ring of ${\overline{\mathcal{M}}}_{g,n}$, Turkish J. Math.25 (2001), 237–243. Zbl1040.14007MR1829089
- [14] R. Hain & E. Looijenga, Mapping class groups and moduli spaces of curves, in Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math. 62, Amer. Math. Soc., 1997, 97–142. Zbl0914.14013MR1492535
- [15] E.-N. Ionel, Topological recursive relations in ${H}^{2g}\left({\mathcal{M}}_{g,n}\right)$, Invent. Math.148 (2002), 627–658. Zbl1056.14076MR1908062
- [16] T. J. Jarvis, Geometry of the moduli of higher spin curves, Internat. J. Math.11 (2000), 637–663. Zbl1094.14504MR1780734
- [17] T. J. Jarvis, T. Kimura & A. Vaintrob, Tensor products of Frobenius manifolds and moduli spaces of higher spin curves, in Conférence Moshé Flato 1999, Vol. II (Dijon), Math. Phys. Stud. 22, Kluwer Acad. Publ., 2000, 145–166. Zbl0988.81120MR1805911
- [18] T. J. Jarvis, T. Kimura & A. Vaintrob, Gravitational descendants and the moduli space of higher spin curves, in Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), Contemp. Math. 276, Amer. Math. Soc., 2001, 167–177. Zbl0986.81105MR1837117
- [19] T. J. Jarvis, T. Kimura & A. Vaintrob, Moduli spaces of higher spin curves and integrable hierarchies, Compositio Math.126 (2001), 157–212. Zbl1015.14028MR1827643
- [20] T. J. Jarvis, T. Kimura & A. Vaintrob, Spin Gromov-Witten invariants, Comm. Math. Phys.259 (2005), 511–543. Zbl1094.14042MR2174415
- [21] M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys.147 (1992), 1–23. Zbl0756.35081MR1171758
- [22] M. Kontsevich & Y. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys.164 (1994), 525–562. Zbl0853.14020MR1291244
- [23] Y.-P. Lee, Witten’s conjecture and the Virasoro conjecture for genus up to two, in Gromov-Witten theory of spin curves and orbifolds, Contemp. Math. 403, Amer. Math. Soc., 2006, 31–42. Zbl1114.14034MR2234883
- [24] Y.-P. Lee, Invariance of tautological equations. I. Conjectures and applications, J. Eur. Math. Soc. (JEMS) 10 (2008), 399–413. Zbl1170.14021MR2390329
- [25] Y.-P. Lee, Invariance of tautological equations. II. Gromov-Witten theory, J. Amer. Math. Soc. 22 (2009), 331–352. Zbl1206.14078MR2476776
- [26] Y.-P. Lee, Witten’s conjecture, Virasoro conjecture, and invariance of tautological equations, preprint arXiv:math.AG/0311100. Zbl1206.14078MR2234883
- [27] Y.-P. Lee & R. Pandharipande, Frobenius manifolds, Gromov-Witten theory, and Virasoro constraints, preprint http://www.math.princeton.edu/~rahulp/Part1.ps and http://www.math.princeton.edu/~rahulp/Part2.ps.
- [28] T. Mochizuki, The virtual class of the moduli stack of stable $r$-spin curves, Comm. Math. Phys.264 (2006), 1–40. Zbl1136.14015MR2211733
- [29] D. Mumford, Towards an enumerative geometry of the moduli space of curves, in Arithmetic and geometry, Vol. II, Progr. Math. 36, Birkhäuser, 1983, 271–328. Zbl0554.14008MR717614
- [30] A. Polishchuk, Witten’s top Chern class on the moduli space of higher spin curves, in Frobenius manifolds, Aspects Math., E36, Vieweg, 2004, 253–264. Zbl1105.14010MR2115773
- [31] A. Polishchuk & A. Vaintrob, Algebraic construction of Witten’s top Chern class, in Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), Contemp. Math. 276, Amer. Math. Soc., 2001, 229–249. Zbl1051.14007MR1837120
- [32] S. Shadrin, Geometry of meromorphic functions and intersections on moduli spaces of curves, Int. Math. Res. Not.2003 (2003), 2051–2094. Zbl1070.14030MR1994776
- [33] S. Shadrin, Intersections in genus 3 and the Boussinesq hierarchy, Lett. Math. Phys.65 (2003), 125–131. Zbl1048.37060MR2022125
- [34] S. Shadrin & D. Zvonkine, Intersection numbers with Witten’s top Chern class, Geom. Topol.12 (2008), 713–745. Zbl1141.14012MR2403799
- [35] E. Witten, Algebraic geometry associated with matrix models of two-dimensional gravity, in Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, 1993, 235–269. Zbl0812.14017MR1215968

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.