Nonuniform center bunching and the genericity of ergodicity among partially hyperbolic symplectomorphisms
Artur Avila; Jairo Bochi; Amie Wilkinson
Annales scientifiques de l'École Normale Supérieure (2009)
- Volume: 42, Issue: 6, page 931-979
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topAvila, Artur, Bochi, Jairo, and Wilkinson, Amie. "Nonuniform center bunching and the genericity of ergodicity among $C^1$ partially hyperbolic symplectomorphisms." Annales scientifiques de l'École Normale Supérieure 42.6 (2009): 931-979. <http://eudml.org/doc/272237>.
@article{Avila2009,
abstract = {We introduce the notion of nonuniform center bunching for partially hyperbolic diffeomorphims, and extend previous results by Burns–Wilkinson and Avila–Santamaria–Viana. Combining this new technique with other constructions we prove that $C^1$-generic partially hyperbolic symplectomorphisms are ergodic. We also construct new examples of stably ergodic partially hyperbolic diffeomorphisms.},
author = {Avila, Artur, Bochi, Jairo, Wilkinson, Amie},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {partial hyperbolicity; center bunching; ergodicity; symplectic diffeomorphisms},
language = {eng},
number = {6},
pages = {931-979},
publisher = {Société mathématique de France},
title = {Nonuniform center bunching and the genericity of ergodicity among $C^1$ partially hyperbolic symplectomorphisms},
url = {http://eudml.org/doc/272237},
volume = {42},
year = {2009},
}
TY - JOUR
AU - Avila, Artur
AU - Bochi, Jairo
AU - Wilkinson, Amie
TI - Nonuniform center bunching and the genericity of ergodicity among $C^1$ partially hyperbolic symplectomorphisms
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 6
SP - 931
EP - 979
AB - We introduce the notion of nonuniform center bunching for partially hyperbolic diffeomorphims, and extend previous results by Burns–Wilkinson and Avila–Santamaria–Viana. Combining this new technique with other constructions we prove that $C^1$-generic partially hyperbolic symplectomorphisms are ergodic. We also construct new examples of stably ergodic partially hyperbolic diffeomorphisms.
LA - eng
KW - partial hyperbolicity; center bunching; ergodicity; symplectic diffeomorphisms
UR - http://eudml.org/doc/272237
ER -
References
top- [1] F. Abdenur & M. Viana, Flavors of partial hyperbolicity, in preparation.
- [2] D. V. Anosov & A. B. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trans. Moscow Math. Soc. 23 (1970), 1–35. Zbl0255.58007MR370662
- [3] A. Arbieto & C. Matheus, A pasting lemma and some applications for conservative systems, Ergodic Theory Dynam. Systems27 (2007), 1399–1417. Zbl1142.37025MR2358971
- [4] M.-C. Arnaud, Le “closing lemma” en topologie , Mém. Soc. Math. Fr. (N.S.) 74 (1998). Zbl0920.58039MR1662930
- [5] M.-C. Arnaud, C. Bonatti & S. Crovisier, Dynamiques symplectiques génériques, Ergodic Theory Dynam. Systems25 (2005), 1401–1436. Zbl1084.37017MR2173426
- [6] L. Arnold, Random dynamical systems, 2nd éd., Springer Mono. Math., Springer, 2002. MR1374107
- [7] A. Avila, On the regularization of conservative maps, to appear in Acta Math. Zbl1211.37029MR2736152
- [8] A. Avila, J. Santamaria & M. Viana, Cocycles over partially hyperbolic maps, preprint. Zbl06266975
- [9] J. Bochi, -generic symplectic diffeomorphisms: partial hyperbolicity and zero center Lyapunov exponents, to appear in J. Inst. Math. Jussieu. Zbl1181.37031MR2576798
- [10] J. Bochi & M. Viana, The Lyapunov exponents of generic volume-preserving and symplectic maps, Ann. of Math.161 (2005), 1423–1485. Zbl1101.37039MR2180404
- [11] C. Bonatti & S. Crovisier, Récurrence et généricité, Invent. Math.158 (2004), 33–104. Zbl1071.37015MR2090361
- [12] C. Bonatti, L. J. Díaz & E. R. Pujals, A -generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math.158 (2003), 355–418. Zbl1049.37011MR2018925
- [13] C. Bonatti, L. J. Díaz & M. Viana, Dynamics beyond uniform hyperbolicity, Encyclopaedia of Math. Sciences 102, Springer, 2005. Zbl1060.37020MR2105774
- [14] C. Bonatti, C. Matheus, M. Viana & A. Wilkinson, Abundance of stable ergodicity, Comment. Math. Helv.79 (2004), 753–757. Zbl1052.37023MR2099120
- [15] M. I. Brin, Topological transitivity of a certain class of dynamical systems, and flows of frames on manifolds of negative curvature, Functional Anal. Appl.9 (1975), 8–16. Zbl0357.58011MR370660
- [16] K. Burns, D. Dolgopyat & Y. Pesin, Partial hyperbolicity, Lyapunov exponents and stable ergodicity, J. Statist. Phys. 108 (2002), 927–942. Zbl1124.37308MR1933439
- [17] K. Burns, D. Dolgopyat, Y. Pesin & M. Pollicott, Stable ergodicity for partially hyperbolic attractors with negative central exponents, J. Mod. Dyn.2 (2008), 63–81. Zbl1145.37021MR2366230
- [18] K. Burns & A. Wilkinson, On the ergodicity of partially hyperbolic systems, Annals of Math.171 (2010), 429–467. Zbl1196.37057MR2630044
- [19] D. Dolgopyat & A. Wilkinson, Stable accessibility is dense, Astérisque287 (2003), 33–60. Zbl1213.37053MR2039999
- [20] N. Gourmelon, Adapted metrics for dominated splittings, Ergodic Theory Dynam. Systems27 (2007), 1839–1849. Zbl1127.37031MR2371598
- [21] M. W. Hirsch, C. Pugh & M. Shub, Invariant manifolds, Lecture Notes in Math. 583, Springer, 1977. Zbl0355.58009MR501173
- [22] V. Horita & A. Tahzibi, Partial hyperbolicity for symplectic diffeomorphisms, Ann. Inst. H. Poincaré Anal. Non Linéaire23 (2006), 641–661. Zbl1130.37356MR2259610
- [23] R. Mañé, An ergodic closing lemma, Ann. of Math.116 (1982), 503–540. Zbl0511.58029MR678479
- [24] J. C. Oxtoby & S. M. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math.42 (1941), 874–920. Zbl0063.06074MR5803
- [25] K. Petersen, Ergodic theory, Cambridge Studies in Advanced Math. 2, Cambridge Univ. Press, 1989. Zbl0676.28008MR1073173
- [26] C. Pugh & M. Shub, Stable ergodicity and julienne quasi-conformality, J. Eur. Math. Soc. (JEMS) 2 (2000), 1–52. Zbl0964.37017MR1750453
- [27] C. Pugh, M. Shub & A. Wilkinson, Hölder foliations, Duke Math. J.86 (1997), 517–546. Zbl0877.58045MR1432307
- [28] F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Tahzibi & R. Ures, A criterion for ergodicity of non-uniformly hyperbolic diffeomorphisms, Electron. Res. Announc. Math. Sci. 14 (2007), 74–81 (electronic). Zbl1139.37015MR2353803
- [29] F. Rodriguez Hertz, M. A. Rodriguez Hertz & R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math.172 (2008), 353–381. Zbl1136.37020MR2390288
- [30] R. Saghin & Z. Xia, Partial hyperbolicity or dense elliptic periodic points for -generic symplectic diffeomorphisms, Trans. Amer. Math. Soc. 358 (2006), 5119–5138 (electronic). Zbl1210.37014MR2231887
- [31] M. Shub & A. Wilkinson, Stably ergodic approximation: two examples, Ergodic Theory Dynam. Systems20 (2000), 875–893. Zbl0970.37022MR1764933
- [32] A. Tahzibi, Robust transitivity and almost robust ergodicity, Ergodic Theory Dynam. Systems24 (2004), 1261–1269. Zbl1145.37304MR2085911
- [33] A. Wilkinson, The cohomological equation for partially hyperbolic diffeomorphisms, preprint. Zbl06322495
- [34] E. Zehnder, Note on smoothing symplectic and volume-preserving diffeomorphisms, in Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), Lecture Notes in Math. 597, Springer, 1977, 828–854. Zbl0363.58004MR467846
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.