Nonuniform center bunching and the genericity of ergodicity among C 1 partially hyperbolic symplectomorphisms

Artur Avila; Jairo Bochi; Amie Wilkinson

Annales scientifiques de l'École Normale Supérieure (2009)

  • Volume: 42, Issue: 6, page 931-979
  • ISSN: 0012-9593

Abstract

top
We introduce the notion of nonuniform center bunching for partially hyperbolic diffeomorphims, and extend previous results by Burns–Wilkinson and Avila–Santamaria–Viana. Combining this new technique with other constructions we prove that C 1 -generic partially hyperbolic symplectomorphisms are ergodic. We also construct new examples of stably ergodic partially hyperbolic diffeomorphisms.

How to cite

top

Avila, Artur, Bochi, Jairo, and Wilkinson, Amie. "Nonuniform center bunching and the genericity of ergodicity among $C^1$ partially hyperbolic symplectomorphisms." Annales scientifiques de l'École Normale Supérieure 42.6 (2009): 931-979. <http://eudml.org/doc/272237>.

@article{Avila2009,
abstract = {We introduce the notion of nonuniform center bunching for partially hyperbolic diffeomorphims, and extend previous results by Burns–Wilkinson and Avila–Santamaria–Viana. Combining this new technique with other constructions we prove that $C^1$-generic partially hyperbolic symplectomorphisms are ergodic. We also construct new examples of stably ergodic partially hyperbolic diffeomorphisms.},
author = {Avila, Artur, Bochi, Jairo, Wilkinson, Amie},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {partial hyperbolicity; center bunching; ergodicity; symplectic diffeomorphisms},
language = {eng},
number = {6},
pages = {931-979},
publisher = {Société mathématique de France},
title = {Nonuniform center bunching and the genericity of ergodicity among $C^1$ partially hyperbolic symplectomorphisms},
url = {http://eudml.org/doc/272237},
volume = {42},
year = {2009},
}

TY - JOUR
AU - Avila, Artur
AU - Bochi, Jairo
AU - Wilkinson, Amie
TI - Nonuniform center bunching and the genericity of ergodicity among $C^1$ partially hyperbolic symplectomorphisms
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 6
SP - 931
EP - 979
AB - We introduce the notion of nonuniform center bunching for partially hyperbolic diffeomorphims, and extend previous results by Burns–Wilkinson and Avila–Santamaria–Viana. Combining this new technique with other constructions we prove that $C^1$-generic partially hyperbolic symplectomorphisms are ergodic. We also construct new examples of stably ergodic partially hyperbolic diffeomorphisms.
LA - eng
KW - partial hyperbolicity; center bunching; ergodicity; symplectic diffeomorphisms
UR - http://eudml.org/doc/272237
ER -

References

top
  1. [1] F. Abdenur & M. Viana, Flavors of partial hyperbolicity, in preparation. 
  2. [2] D. V. Anosov & A. B. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trans. Moscow Math. Soc. 23 (1970), 1–35. Zbl0255.58007MR370662
  3. [3] A. Arbieto & C. Matheus, A pasting lemma and some applications for conservative systems, Ergodic Theory Dynam. Systems27 (2007), 1399–1417. Zbl1142.37025MR2358971
  4. [4] M.-C. Arnaud, Le “closing lemma” en topologie C 1 , Mém. Soc. Math. Fr. (N.S.) 74 (1998). Zbl0920.58039MR1662930
  5. [5] M.-C. Arnaud, C. Bonatti & S. Crovisier, Dynamiques symplectiques génériques, Ergodic Theory Dynam. Systems25 (2005), 1401–1436. Zbl1084.37017MR2173426
  6. [6] L. Arnold, Random dynamical systems, 2nd éd., Springer Mono. Math., Springer, 2002. MR1374107
  7. [7] A. Avila, On the regularization of conservative maps, to appear in Acta Math. Zbl1211.37029MR2736152
  8. [8] A. Avila, J. Santamaria & M. Viana, Cocycles over partially hyperbolic maps, preprint. Zbl06266975
  9. [9] J. Bochi, C 1 -generic symplectic diffeomorphisms: partial hyperbolicity and zero center Lyapunov exponents, to appear in J. Inst. Math. Jussieu. Zbl1181.37031MR2576798
  10. [10] J. Bochi & M. Viana, The Lyapunov exponents of generic volume-preserving and symplectic maps, Ann. of Math.161 (2005), 1423–1485. Zbl1101.37039MR2180404
  11. [11] C. Bonatti & S. Crovisier, Récurrence et généricité, Invent. Math.158 (2004), 33–104. Zbl1071.37015MR2090361
  12. [12] C. Bonatti, L. J. Díaz & E. R. Pujals, A C 1 -generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math.158 (2003), 355–418. Zbl1049.37011MR2018925
  13. [13] C. Bonatti, L. J. Díaz & M. Viana, Dynamics beyond uniform hyperbolicity, Encyclopaedia of Math. Sciences 102, Springer, 2005. Zbl1060.37020MR2105774
  14. [14] C. Bonatti, C. Matheus, M. Viana & A. Wilkinson, Abundance of stable ergodicity, Comment. Math. Helv.79 (2004), 753–757. Zbl1052.37023MR2099120
  15. [15] M. I. Brin, Topological transitivity of a certain class of dynamical systems, and flows of frames on manifolds of negative curvature, Functional Anal. Appl.9 (1975), 8–16. Zbl0357.58011MR370660
  16. [16] K. Burns, D. Dolgopyat & Y. Pesin, Partial hyperbolicity, Lyapunov exponents and stable ergodicity, J. Statist. Phys. 108 (2002), 927–942. Zbl1124.37308MR1933439
  17. [17] K. Burns, D. Dolgopyat, Y. Pesin & M. Pollicott, Stable ergodicity for partially hyperbolic attractors with negative central exponents, J. Mod. Dyn.2 (2008), 63–81. Zbl1145.37021MR2366230
  18. [18] K. Burns & A. Wilkinson, On the ergodicity of partially hyperbolic systems, Annals of Math.171 (2010), 429–467. Zbl1196.37057MR2630044
  19. [19] D. Dolgopyat & A. Wilkinson, Stable accessibility is C 1 dense, Astérisque287 (2003), 33–60. Zbl1213.37053MR2039999
  20. [20] N. Gourmelon, Adapted metrics for dominated splittings, Ergodic Theory Dynam. Systems27 (2007), 1839–1849. Zbl1127.37031MR2371598
  21. [21] M. W. Hirsch, C. Pugh & M. Shub, Invariant manifolds, Lecture Notes in Math. 583, Springer, 1977. Zbl0355.58009MR501173
  22. [22] V. Horita & A. Tahzibi, Partial hyperbolicity for symplectic diffeomorphisms, Ann. Inst. H. Poincaré Anal. Non Linéaire23 (2006), 641–661. Zbl1130.37356MR2259610
  23. [23] R. Mañé, An ergodic closing lemma, Ann. of Math.116 (1982), 503–540. Zbl0511.58029MR678479
  24. [24] J. C. Oxtoby & S. M. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math.42 (1941), 874–920. Zbl0063.06074MR5803
  25. [25] K. Petersen, Ergodic theory, Cambridge Studies in Advanced Math. 2, Cambridge Univ. Press, 1989. Zbl0676.28008MR1073173
  26. [26] C. Pugh & M. Shub, Stable ergodicity and julienne quasi-conformality, J. Eur. Math. Soc. (JEMS) 2 (2000), 1–52. Zbl0964.37017MR1750453
  27. [27] C. Pugh, M. Shub & A. Wilkinson, Hölder foliations, Duke Math. J.86 (1997), 517–546. Zbl0877.58045MR1432307
  28. [28] F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Tahzibi & R. Ures, A criterion for ergodicity of non-uniformly hyperbolic diffeomorphisms, Electron. Res. Announc. Math. Sci. 14 (2007), 74–81 (electronic). Zbl1139.37015MR2353803
  29. [29] F. Rodriguez Hertz, M. A. Rodriguez Hertz & R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math.172 (2008), 353–381. Zbl1136.37020MR2390288
  30. [30] R. Saghin & Z. Xia, Partial hyperbolicity or dense elliptic periodic points for C 1 -generic symplectic diffeomorphisms, Trans. Amer. Math. Soc. 358 (2006), 5119–5138 (electronic). Zbl1210.37014MR2231887
  31. [31] M. Shub & A. Wilkinson, Stably ergodic approximation: two examples, Ergodic Theory Dynam. Systems20 (2000), 875–893. Zbl0970.37022MR1764933
  32. [32] A. Tahzibi, Robust transitivity and almost robust ergodicity, Ergodic Theory Dynam. Systems24 (2004), 1261–1269. Zbl1145.37304MR2085911
  33. [33] A. Wilkinson, The cohomological equation for partially hyperbolic diffeomorphisms, preprint. Zbl06322495
  34. [34] E. Zehnder, Note on smoothing symplectic and volume-preserving diffeomorphisms, in Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), Lecture Notes in Math. 597, Springer, 1977, 828–854. Zbl0363.58004MR467846

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.