Le «closing lemma» en topologie
Mémoires de la Société Mathématique de France (1998)
- Volume: 74, page 1-120
- ISSN: 0249-633X
Access Full Article
topHow to cite
topArnaud, Marie-Claude. "Le «closing lemma» en topologie $C^1$." Mémoires de la Société Mathématique de France 74 (1998): 1-120. <http://eudml.org/doc/94925>.
@article{Arnaud1998,
author = {Arnaud, Marie-Claude},
journal = {Mémoires de la Société Mathématique de France},
keywords = {closing lemma; -topology; manifolds; Borelian positive measures},
language = {fre},
pages = {1-120},
publisher = {Société mathématique de France},
title = {Le «closing lemma» en topologie $C^1$},
url = {http://eudml.org/doc/94925},
volume = {74},
year = {1998},
}
TY - JOUR
AU - Arnaud, Marie-Claude
TI - Le «closing lemma» en topologie $C^1$
JO - Mémoires de la Société Mathématique de France
PY - 1998
PB - Société mathématique de France
VL - 74
SP - 1
EP - 120
LA - fre
KW - closing lemma; -topology; manifolds; Borelian positive measures
UR - http://eudml.org/doc/94925
ER -
References
top- [1] R. ABRAHAM et J. MARSDEN — Foundations of mechanics, Benjamin N.Y., 1967. Zbl0158.42901
- [2] V. ARNOLD — Méthodes mathématiques de la mécanique classique, MIR, 1976. Zbl0385.70001MR57 #14033a
- [3] V. ARNOLD et A. AVEZ — Problèmes ergodiques de la mécanique classique, Gauthier-Villars, 1967. Zbl0149.21704MR35 #334
- [4] C. GUTIERREZ — "A counter-exemple to a C2 closing lemma", Erg. Th. and Dyn. Syst. 7 (1987), p. 509-530. Zbl0642.58036MR89k:58240
- [5] M. HERMAN — "Exemple de flots hamiltoniens dont aucune perturbation en topologie C∞ n'a d'orbites périodiques sur un ouvert de surfaces d'énergie", C.R.A.S. (1991), no. 313, p. 49-51. Zbl0759.58016MR92m:58046
- [6] MAI JIEHUA — "A simpler proof of C1 closing lemma", Scientia Sinica 10 (1986), no. XXIV, p. 1020-1031. Zbl0616.58024
- [7], "A simpler proof of the extended C1 closing lemma", Chinese Science Bull. 34-3 (1989), p. 180-184.
- [8] R. MAÑÉ — "An ergodic closing lemma", Annals of Mathematics 116 (1982), p. 503-540. Zbl0511.58029MR84f:58070
- [9] J. MOSER — "On the volume element on a manifold", Trans. Amer. Math. Soc. 120 (1965), p. 286-294. Zbl0141.19407MR32 #409
- [10], "Proof of a generalized form of a fixed point theorem due to G.D. Birkhoff", Springer Lect. Notes in Math. 597 (1977), p. 464-494. Zbl0358.58009MR58 #13205
- [11] J. PALIS et W. DE MELO — Geometric theory of dynamical systems, Springer-Verlag, 1982. Zbl0491.58001MR84a:58004
- [12] J. PALIS et C. PUGH — "Fifty problems in dynamical systems", L.N. in Math. 468 (1974), p. 345-353. Zbl0304.58011MR58 #31134
- [13] C. PUGH — "The closing lemma", Amer. J. Math. 89 (1967), p. 956-1009. Zbl0167.21803MR37 #2256
- [14], "An improved closing lemma and a general density theorem", Amer. J. Math. 89 (1967), p. 1010-1021. Zbl0167.21804MR37 #2257
- [15] C. PUGH et C. ROBINSON — "The C1 closing lemma, including hamiltonians", Erg. Th. & Dyn. Syst. 3 (1983), p. 261-314. Zbl0548.58012MR85m:58106
- [16] C. ROBINSON — "Introduction to the closing lemma", Springer Lect. Notes in Math. 668 (1978), p. 223-230. Zbl0403.58020MR80d:58061
- [17] M. SHUB — "Stabilité globale des systèmes dynamiques", Asterisque 56 (1978). Zbl0396.58014MR80c:58015
- [18] L. WEN — "On the C1-stability conjecture of flows", J. Diff. Equations 129 (1996), p. 334-357. Zbl0866.58050MR97j:58082
Citations in EuDML Documents
top- Artur Avila, Jairo Bochi, Amie Wilkinson, Nonuniform center bunching and the genericity of ergodicity among partially hyperbolic symplectomorphisms
- Marie-Claude Arnaud, Approximation des ensembles ω-limites des difféomorphismes par des orbites périodiques
- Patrice Le Calvez, Décomposition des difféomorphismes du tore en applications déviant la verticale (avec un appendice en collaboration avec Jean-Marc Gambaudo)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.