Le «closing lemma» en topologie C 1

Marie-Claude Arnaud

Mémoires de la Société Mathématique de France (1998)

  • Volume: 74, page 1-120
  • ISSN: 0249-633X

How to cite

top

Arnaud, Marie-Claude. "Le «closing lemma» en topologie $C^1$." Mémoires de la Société Mathématique de France 74 (1998): 1-120. <http://eudml.org/doc/94925>.

@article{Arnaud1998,
author = {Arnaud, Marie-Claude},
journal = {Mémoires de la Société Mathématique de France},
keywords = {closing lemma; -topology; manifolds; Borelian positive measures},
language = {fre},
pages = {1-120},
publisher = {Société mathématique de France},
title = {Le «closing lemma» en topologie $C^1$},
url = {http://eudml.org/doc/94925},
volume = {74},
year = {1998},
}

TY - JOUR
AU - Arnaud, Marie-Claude
TI - Le «closing lemma» en topologie $C^1$
JO - Mémoires de la Société Mathématique de France
PY - 1998
PB - Société mathématique de France
VL - 74
SP - 1
EP - 120
LA - fre
KW - closing lemma; -topology; manifolds; Borelian positive measures
UR - http://eudml.org/doc/94925
ER -

References

top
  1. [1] R. ABRAHAM et J. MARSDEN — Foundations of mechanics, Benjamin N.Y., 1967. Zbl0158.42901
  2. [2] V. ARNOLD — Méthodes mathématiques de la mécanique classique, MIR, 1976. Zbl0385.70001MR57 #14033a
  3. [3] V. ARNOLD et A. AVEZ — Problèmes ergodiques de la mécanique classique, Gauthier-Villars, 1967. Zbl0149.21704MR35 #334
  4. [4] C. GUTIERREZ — "A counter-exemple to a C2 closing lemma", Erg. Th. and Dyn. Syst. 7 (1987), p. 509-530. Zbl0642.58036MR89k:58240
  5. [5] M. HERMAN — "Exemple de flots hamiltoniens dont aucune perturbation en topologie C∞ n'a d'orbites périodiques sur un ouvert de surfaces d'énergie", C.R.A.S. (1991), no. 313, p. 49-51. Zbl0759.58016MR92m:58046
  6. [6] MAI JIEHUA — "A simpler proof of C1 closing lemma", Scientia Sinica 10 (1986), no. XXIV, p. 1020-1031. Zbl0616.58024
  7. [7], "A simpler proof of the extended C1 closing lemma", Chinese Science Bull. 34-3 (1989), p. 180-184. 
  8. [8] R. MAÑÉ — "An ergodic closing lemma", Annals of Mathematics 116 (1982), p. 503-540. Zbl0511.58029MR84f:58070
  9. [9] J. MOSER — "On the volume element on a manifold", Trans. Amer. Math. Soc. 120 (1965), p. 286-294. Zbl0141.19407MR32 #409
  10. [10], "Proof of a generalized form of a fixed point theorem due to G.D. Birkhoff", Springer Lect. Notes in Math. 597 (1977), p. 464-494. Zbl0358.58009MR58 #13205
  11. [11] J. PALIS et W. DE MELO — Geometric theory of dynamical systems, Springer-Verlag, 1982. Zbl0491.58001MR84a:58004
  12. [12] J. PALIS et C. PUGH — "Fifty problems in dynamical systems", L.N. in Math. 468 (1974), p. 345-353. Zbl0304.58011MR58 #31134
  13. [13] C. PUGH — "The closing lemma", Amer. J. Math. 89 (1967), p. 956-1009. Zbl0167.21803MR37 #2256
  14. [14], "An improved closing lemma and a general density theorem", Amer. J. Math. 89 (1967), p. 1010-1021. Zbl0167.21804MR37 #2257
  15. [15] C. PUGH et C. ROBINSON — "The C1 closing lemma, including hamiltonians", Erg. Th. & Dyn. Syst. 3 (1983), p. 261-314. Zbl0548.58012MR85m:58106
  16. [16] C. ROBINSON — "Introduction to the closing lemma", Springer Lect. Notes in Math. 668 (1978), p. 223-230. Zbl0403.58020MR80d:58061
  17. [17] M. SHUB — "Stabilité globale des systèmes dynamiques", Asterisque 56 (1978). Zbl0396.58014MR80c:58015
  18. [18] L. WEN — "On the C1-stability conjecture of flows", J. Diff. Equations 129 (1996), p. 334-357. Zbl0866.58050MR97j:58082

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.