Multiple zeta values and periods of moduli spaces
Annales scientifiques de l'École Normale Supérieure (2009)
- Volume: 42, Issue: 3, page 371-489
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topBrown, Francis C. S.. "Multiple zeta values and periods of moduli spaces $\overline{\mathfrak {M}}_{0,n}$." Annales scientifiques de l'École Normale Supérieure 42.3 (2009): 371-489. <http://eudml.org/doc/272243>.
@article{Brown2009,
abstract = {We prove a conjecture due to Goncharov and Manin which states that the periods of the moduli spaces $\mathfrak \{M\}_\{0,n\}$ of Riemann spheres with $n$ marked points are multiple zeta values. We do this by introducing a differential algebra of multiple polylogarithms on $\mathfrak \{M\}_\{0,n\}$ and proving that it is closed under the operation of taking primitives. The main idea is to apply a version of Stokes’ formula iteratively to reduce each period integral to multiple zeta values.
We also give a geometric interpretation of the double shuffle relations, by showing that they are two extreme cases of general product formulae for periods which arise by considering natural maps between moduli spaces.},
author = {Brown, Francis C. S.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {moduli spaces; multiple zeta values; iterated integrals; polylogarithms; associators; associahedra},
language = {eng},
number = {3},
pages = {371-489},
publisher = {Société mathématique de France},
title = {Multiple zeta values and periods of moduli spaces $\overline\{\mathfrak \{M\}\}_\{0,n\}$},
url = {http://eudml.org/doc/272243},
volume = {42},
year = {2009},
}
TY - JOUR
AU - Brown, Francis C. S.
TI - Multiple zeta values and periods of moduli spaces $\overline{\mathfrak {M}}_{0,n}$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 3
SP - 371
EP - 489
AB - We prove a conjecture due to Goncharov and Manin which states that the periods of the moduli spaces $\mathfrak {M}_{0,n}$ of Riemann spheres with $n$ marked points are multiple zeta values. We do this by introducing a differential algebra of multiple polylogarithms on $\mathfrak {M}_{0,n}$ and proving that it is closed under the operation of taking primitives. The main idea is to apply a version of Stokes’ formula iteratively to reduce each period integral to multiple zeta values.
We also give a geometric interpretation of the double shuffle relations, by showing that they are two extreme cases of general product formulae for periods which arise by considering natural maps between moduli spaces.
LA - eng
KW - moduli spaces; multiple zeta values; iterated integrals; polylogarithms; associators; associahedra
UR - http://eudml.org/doc/272243
ER -
References
top- [1] K. Aomoto, Fonctions hyperlogarithmiques et groupes de monodromie unipotents, J. Fac. Sci. Univ. Tokyo Sect. IA Math.25 (1978), 149–156. Zbl0416.32020MR509582
- [2] K. Aomoto, Addition theorem of Abel type for hyper-logarithms, Nagoya Math. J.88 (1982), 55–71. Zbl0545.33014MR683242
- [3] K. Aomoto, Special values of hyperlogarithms and linear difference schemes, Illinois J. Math.34 (1990), 191–216. Zbl0684.33010MR1046562
- [4] V. I. Arnolʼd, The cohomology ring of the group of dyed braids, Mat. Zametki5 (1969), 227–231. Zbl0277.55002MR242196
- [5] A. A. Beilinson, A. B. Goncharov, V. V. Schechtman & A. N. Varchenko, Aomoto dilogarithms, mixed Hodge structures and motivic cohomology of a pair of triangles in the plane, in Grothendieck Festschrift, 86, Birkhäuser, 1990, 135–171. Zbl0737.14003MR1086885
- [6] A. Borel & J-P. Serre, Corners and arithmetic groups, Comment. Math. Helv.48 (1973), 436–491. Zbl0274.22011MR387495
- [7] F. C. S. Brown, Polylogarithmes multiples uniformes en une variable, C. R. Math. Acad. Sci. Paris338 (2004), 527–532. Zbl1048.11053MR2057024
- [8] F. C. S. Brown, Single-valued hyperlogarithms and unipotent differential equations, preprint.
- [9] K. T. Chen, Extension of function algebra by integrals and Malcev completion of , Advances in Math.23 (1977), 181–210. Zbl0345.58003MR458461
- [10] K. T. Chen, Iterated path integrals, Bull. Amer. Math. Soc.83 (1977), 831–879. Zbl0389.58001MR454968
- [11] P. Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Math., Vol. 163, Springer, 1970. Zbl0244.14004
- [12] P. Deligne, Théorie de Hodge. III, Publ. Math. I.H.É.S. 44 (1974), 5–77. Zbl0237.14003MR498552
- [13] P. Deligne, Le groupe fondamental de la droite projective moins trois points, in Galois groups over (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ. 16, Springer, 1989, 79–297. Zbl0742.14022MR1012168
- [14] P. Deligne & A. B. Goncharov, Groupes fondamentaux motiviques de Tate mixte, Ann. Sci. École Norm. Sup.38 (2005), 1–56. Zbl1084.14024MR2136480
- [15] S. L. Devadoss, Tessellations of moduli spaces and the mosaic operad, in Homotopy invariant algebraic structures (Baltimore, MD, 1998), Contemp. Math. 239, Amer. Math. Soc., 1999, 91–114. Zbl0968.32009MR1718078
- [16] S. L. Devadoss, Combinatorial equivalence of real moduli spaces, Notices Amer. Math. Soc.51 (2004), 620–628. Zbl1093.14509MR2064149
- [17] A. C. Dixon, On a certain double integral, Proc. London Math. Soc.2 (1905), 8–15. Zbl35.0320.01MR1577292JFM35.0320.01
- [18] V. G. Drinfelʼd, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with , Leningrad Math. Journal2 (1991), 829–860. Zbl0728.16021MR1080203
- [19] J. Écalle, Singularités non abordables par la géométrie, Ann. Inst. Fourier (Grenoble) 42 (1992), 73–164. Zbl0940.32013MR1162558
- [20] M. Falk & R. Randell, The lower central series of a fiber-type arrangement, Invent. Math.82 (1985), 77–88. Zbl0574.55010MR808110
- [21] S. Fischler, Groupes de Rhin-Viola et intégrales multiples, J. Théor. Nombres Bordeaux15 (2003), 479–534. Zbl1074.11040MR2140865
- [22] E. Getzler, Operads and moduli spaces of genus Riemann surfaces, in The moduli space of curves (Texel Island, 1994), Progr. Math. 129, Birkhäuser, 1995, 199–230. Zbl0851.18005MR1363058
- [23] A. B. Goncharov, The dihedral Lie algebras and Galois symmetries of , Duke Math. J.110 (2001), 397–487. Zbl1113.14020MR1869113
- [24] A. B. Goncharov, Multiple -values, Galois groups, and geometry of modular varieties, in European Congress of Mathematics, Vol. I (Barcelona, 2000), Progr. Math. 201, Birkhäuser, 2001, 361–392. Zbl1042.11042
- [25] A. B. Goncharov, Multiple polylogarithms and mixed Tate motives, preprint arXiv:math.AG/0103059.
- [26] A. B. Goncharov, Periods and mixed motives, preprint arXiv:math.AG/0202154.
- [27] A. B. Goncharov & Y. I. Manin, Multiple -motives and moduli spaces , Compos. Math.140 (2004), 1–14. Zbl1047.11063
- [28] J. Gonzalez-Lorca, Série de Drinfel’d, monodromie et algèbres de Hecke, Thèse de doctorat, École Normale Supérieure, 1998.
- [29] P. Griffiths & W. Schmid, Recent developments in Hodge theory: a discussion of techniques and results, in Discrete subgroups of Lie groups and applicatons to moduli (Internat. Colloq., Bombay, 1973), Oxford Univ. Press, 1975, 31–127. Zbl0355.14003MR419850
- [30] A. Grothendieck, On the de Rham cohomology of algebraic varieties, Publ. Math. I.H.É.S. 29 (1966), 95–103. Zbl0145.17602MR199194
- [31] R. M. Hain, The geometry of the mixed Hodge structure on the fundamental group, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math. 46, Amer. Math. Soc., 1987, 247–282. Zbl0654.14006MR927984
- [32] R. M. Hain, Classical polylogarithms, in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, Amer. Math. Soc., 1994, 3–42. Zbl0807.19003MR1265550
- [33] R. M. Hain & R. MacPherson, Higher logarithms, Illinois J. Math.34 (1990), 392–475. Zbl0737.14014MR1046570
- [34] M. Hoang Ngoc, M. Petitot & J. Van Den Hoeven, Shuffle algebra and polylogarithms, in Formal Power Series and Algebraic Combinatorics 1998, Toronto. Zbl0965.68129
- [35] M. E. Hoffman, Quasi-shuffle products, J. Algebraic Combin.11 (2000), 49–68. Zbl0959.16021MR1747062
- [36] M. M. Kapranov, The permutoassociahedron, Mac Lane’s coherence theorem and asymptotic zones for the KZ equation, J. Pure Appl. Algebra 85 (1993), 119–142. Zbl0812.18003MR1207505
- [37] V. G. Knizhnik & A. B. Zamolodchikov, Current algebra and Wess-Zumino model in two dimensions, Nuclear Phys. B247 (1984), 83–103. Zbl0661.17020MR853258
- [38] T. Kohno, Série de Poincaré-Koszul associée aux groupes de tresses pures, Invent. Math.82 (1985), 57–75. Zbl0574.55009MR808109
- [39] E. R. Kolchin, Differential algebra and algebraic groups, Academic Press, 1973, Pure and Applied Mathematics, Vol. 54. Zbl0264.12102MR568864
- [40] I. Lappo-Danilevskii, Mémoires sur la théorie des systèmes des équations différentielles linéaires, Chelsea, New York, 1953. Zbl0011.34903
- [41] A. R. Magid, Lectures on differential Galois theory, University Lecture Series 7, Amer. Math. Soc., 1994. Zbl0855.12001MR1301076
- [42] L. Boutet de Monvel, Polylogarithmes, http://www.math.jussieu.fr/~boutet.
- [43] P. Orlik & H. Terao, Arrangements of hyperplanes, Grund. Math. Wiss. 300, Springer, 1992. Zbl0757.55001MR1217488
- [44] H. Poincaré, Sur les groupes d’équations linéaires, Acta Mathematica 4 (1884). JFM16.0252.01
- [45] G. Racinet, Doubles mélanges des polylogarithmes multiples aux racines de l’unité, Publ. Math. Inst. Hautes Études Sci.95 (2002), 185–231. Zbl1050.11066MR1953193
- [46] D. E. Radford, A natural ring basis for the shuffle algebra and an application to group schemes, J. Algebra58 (1979), 432–454. Zbl0409.16011MR540649
- [47] G. Rhin & C. Viola, On a permutation group related to , Acta Arith.77 (1996), 23–56. Zbl0864.11037MR1404975
- [48] J. D. Stasheff, Homotopy associativity of -spaces. I, Trans. Amer. Math. Soc. 108 (1963), 275–292. Zbl0114.39402
- [49] T. Terasoma, Selberg integrals and multiple zeta values, Compositio Math.133 (2002), 1–24. Zbl1003.11042MR1918286
- [50] C. Voisin, Hodge theory and complex algebraic geometry. II, Cambridge Studies in Advanced Mathematics 77, Cambridge University Press, 2003. Zbl1032.14002MR1997577
- [51] M. Waldschmidt, Valeurs zêta multiples. Une introduction, J. Théor. Nombres Bordeaux 12 (2000), 581–595. Zbl0976.11037MR1823204
- [52] M. Yoshida, Fuchsian differential equations, Aspects of Mathematics, E11, Friedr. Vieweg & Sohn, 1987. Zbl0618.35001MR986252
- [53] J. Zhao, Multiple polylogarithms: analytic continuation, monodromy, and variations of mixed Hodge structures, in Contemporary trends in algebraic geometry and algebraic topology (Tianjin, 2000), Nankai Tracts Math. 5, World Sci. Publ., River Edge, NJ, 2002, 167–193. Zbl1058.32005MR1945360
- [54] S. A. Zlobin, Integrals that can be represented as linear forms of generalized polylogarithms, Mat. Zametki [Math. Notes] 71 (2002), 782–787 [711–716]. Zbl1049.11077MR1936201
- [55] W. Zudilin, Well-poised hypergeometric transformations of Euler-type multiple integrals, J. London Math. Soc.70 (2004), 215–230. Zbl1065.11054MR2064759
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.