Groupes fondamentaux motiviques de Tate mixte

Pierre Deligne; Alexander B. Goncharov

Annales scientifiques de l'École Normale Supérieure (2005)

  • Volume: 38, Issue: 1, page 1-56
  • ISSN: 0012-9593

How to cite

top

Deligne, Pierre, and Goncharov, Alexander B.. "Groupes fondamentaux motiviques de Tate mixte." Annales scientifiques de l'École Normale Supérieure 38.1 (2005): 1-56. <http://eudml.org/doc/82653>.

@article{Deligne2005,
author = {Deligne, Pierre, Goncharov, Alexander B.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {unipotent bundles; Tate motives},
language = {fre},
number = {1},
pages = {1-56},
publisher = {Elsevier},
title = {Groupes fondamentaux motiviques de Tate mixte},
url = {http://eudml.org/doc/82653},
volume = {38},
year = {2005},
}

TY - JOUR
AU - Deligne, Pierre
AU - Goncharov, Alexander B.
TI - Groupes fondamentaux motiviques de Tate mixte
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 1
SP - 1
EP - 56
LA - fre
KW - unipotent bundles; Tate motives
UR - http://eudml.org/doc/82653
ER -

References

top
  1. [1] Bass H., Generators and relations for cyclotomic units, Nagoya Math. J.27 (1966) 401-407. Zbl0144.29403MR201414
  2. [2] Beilinson A., Higher regulators and values of L-functions, Sovremennye Problemy Matematiki24 (1984) 181-238, (en russe). Zbl0588.14013MR760999
  3. [3] Beilinson A., Bernstein J., Deligne P., Faisceaux pervers, in: Analyse et topologie sur les espaces singuliers, Astérisque, vol. 100, SMF, 1982. Zbl0536.14011MR751966
  4. [4] Bloch S., Algebraic cycles and algebraic K-theory, Adv. in Math.61 (3) (1986) 267-304. Zbl0608.14004MR852815
  5. [5] Bloch S., The moving lemma for higher Chow groups, J. Algebraic Geom.3 (3) (1994) 537-568. Zbl0830.14003MR1269719
  6. [6] Borel A., Stable real cohomology of arithmetic groups, Ann. Sci. Éc. Nom. Sup.7 (1974) 235-272. Zbl0316.57026MR387496
  7. [7] Borel A., Cohomologie de SL n et valeurs de fonctions zêta aux points entiers, Ann. Scuola Normale Superiore4 (1977) 613-636. Zbl0382.57027MR506168
  8. [8] Buchsbaum A., Satellites and exact functors, Ann. of Math.71 (2) (1960) 199-209. Zbl0095.16505MR112905
  9. [9] Chen K.T., Iterated integrals of differential forms and loop space homology, Ann. of Math.97 (1973) 217-246. Zbl0227.58003MR380859
  10. [10] Chen K.T., Reduced Bar Constructions on de Rham complexes, in: Algebra, Topology and Category Theory, a collection of papers in honor of Samuel Eilenberg, Academic Press, 1976, pp. 19-32. Zbl0341.57034MR413151
  11. [11] Deligne P., Le groupe fondamental de la droite projective moins trois points, in: Galois Groups over Q , MSRI Publ., vol. 16, Springer-Verlag, 1989, pp. 79-313. Zbl0742.14022MR1012168
  12. [12] Deligne P., Catégories tannakiennes, in: Grothendieck Festschrift, vol. 2, Progress in Math., vol. 87, Birkhäuser, 1990, pp. 111-195. Zbl0727.14010MR1106898
  13. [13] Deligne P., Morgan J., Notes on supersymmetry, in: Quantum Fields and Strings : A Course for Mathematicians, vol. 1, AMS, 1999. Zbl1170.58302MR1701597
  14. [14] Demazure M., Gabriel P., Groupes algébriques, Masson, 1970. Zbl0203.23401
  15. [15] Goncharov A.B., Polylogarithms in arithmetic and geometry, in: Proc. ICM Zurich, Birkhäuser, 1994, pp. 374-387. Zbl0849.11087MR1403938
  16. [16] Goncharov A.B., The dihedral Lie algebras and Galois symmetries of π 1 ( P 1 - { 0 , } μ N ) , Duke Math. J.110 (3) (2001) 397-487. Zbl1113.14020MR1869113
  17. [17] Hain R., Matsumoto M., Weighted completion of Galois groups and Galois actions on the fundamental group of P 1 - { 0 , 1 , } , Compositio Math.139 (2) (2003) 119-167. Zbl1072.14021MR2025807
  18. [18] Hain R., Zucker S., Unipotent variations of mixed Hodge structure, Inv. Math.88 (1987) 83-124. Zbl0622.14007MR877008
  19. [19] Hanamura M., Mixed motives and algebraic cycles I, Math. Res. Lett.2 (6) (1995) 811-821, See also II, Inv. Math.158 (1) (2004) 105-179. Zbl0867.14003MR1362972
  20. [20] Huber A., Mixed Motives and their Realization in Derived Categories, Lecture Notes in Math., vol. 1604, Springer-Verlag, 1995. Zbl0938.14008MR1439046
  21. [21] Huber A., Realization of Voevodsky's motives, J. Algebraic Geom.9 (2000) 755-799, Corrigendum, Ibid.13 (1) (2004) 195-207. Zbl1058.14033MR2008720
  22. [22] Jannsen U., Mixed Motives and Algebraic K-Theory, Lecture Notes in Math., vol. 1400, Springer-Verlag, 1990. Zbl0691.14001MR1043451
  23. [23] Kubert D., The universal ordinary distribution, Bull. SMF107 (1979) 79-202. Zbl0409.12021MR545171
  24. [24] Levine M., Tate motives and the vanishing conjectures for algebraic K-theory, in: Algebraic K-Theory and Algebraic Topology, Lake Louise, 1991, NATO Adv. Sci. Inst. Ser. C Math. Phys., vol. 407, Kluwer, 1993, pp. 167-188. Zbl0885.19001MR1367296
  25. [25] Levine M., Bloch's higher Chow groups revisited, in: K-theory, Strasbourg, 1992, Astérisque, vol. 226, SMF, 1994, pp. 235-320. Zbl0817.19004MR1317122
  26. [26] Levine M., Mixed Motives, Math. Surveys and Monographs, vol. 57, AMS, 1998. Zbl0902.14003MR1623774
  27. [27] Racinet G., Doubles mélanges des polylogarithmes multiples aux racines de l'unité, Publ. Math. IHÉS95 (2002) 185-231. Zbl1050.11066MR1953193
  28. [28] Rapoport M., Comparison of the regulators of Beilinson and of Borel, in: Beilinson's Conjectures on Special Values of L-Functions, Perspectives in Math., vol. 4, Academic Press, 1988, pp. 169-192. Zbl0667.14005MR944994
  29. [29] Reutenauer C., Free Lie Algebras, LMS Monographs New Ser., vol. 7, Oxford University Press, 1993. Zbl0798.17001MR1231799
  30. [30] Schneider P., Introduction to the Beilinson conjectures, in: Beilinson's Conjectures on Special Values of L-Functions, Perspectives in Math., vol. 4, Academic Press, 1988, pp. 1-35. Zbl0673.14007MR944989
  31. [31] Terasoma T., Multiple zeta values and mixed Tate motives, Inv. Math.149 (2) (2002) 339-369. Zbl1042.11043MR1918675
  32. [32] Voevodsky V., Triangulated categories of motives over a field, in: Cycles, Transfer and Motivic Homology Theories, Ann. of Math. Studies, vol. 143, Princeton University Press, 2000, pp. 188-238. Zbl1019.14009MR1764202
  33. [33] Washington L.C., Introduction to cyclotomic fields, Graduate Texts in Math., vol. 81, Springer-Verlag, 1997. Zbl0484.12001MR1421575
  34. [34] Wojtkowiak Z., Cosimplicial objects in algebraic geometry, in: Algebraic K-Theory and Algebraic Topology, Lake Louise, 1991, NATO Adv. Sci. but. Ser. C Math. Phys., vol. 407, Kluwer, 1993, pp. 287-327. Zbl0916.14006MR1367304

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.