Groupes fondamentaux motiviques de Tate mixte
Pierre Deligne; Alexander B. Goncharov
Annales scientifiques de l'École Normale Supérieure (2005)
- Volume: 38, Issue: 1, page 1-56
- ISSN: 0012-9593
Access Full Article
topHow to cite
topDeligne, Pierre, and Goncharov, Alexander B.. "Groupes fondamentaux motiviques de Tate mixte." Annales scientifiques de l'École Normale Supérieure 38.1 (2005): 1-56. <http://eudml.org/doc/82653>.
@article{Deligne2005,
author = {Deligne, Pierre, Goncharov, Alexander B.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {unipotent bundles; Tate motives},
language = {fre},
number = {1},
pages = {1-56},
publisher = {Elsevier},
title = {Groupes fondamentaux motiviques de Tate mixte},
url = {http://eudml.org/doc/82653},
volume = {38},
year = {2005},
}
TY - JOUR
AU - Deligne, Pierre
AU - Goncharov, Alexander B.
TI - Groupes fondamentaux motiviques de Tate mixte
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 1
SP - 1
EP - 56
LA - fre
KW - unipotent bundles; Tate motives
UR - http://eudml.org/doc/82653
ER -
References
top- [1] Bass H., Generators and relations for cyclotomic units, Nagoya Math. J.27 (1966) 401-407. Zbl0144.29403MR201414
- [2] Beilinson A., Higher regulators and values of L-functions, Sovremennye Problemy Matematiki24 (1984) 181-238, (en russe). Zbl0588.14013MR760999
- [3] Beilinson A., Bernstein J., Deligne P., Faisceaux pervers, in: Analyse et topologie sur les espaces singuliers, Astérisque, vol. 100, SMF, 1982. Zbl0536.14011MR751966
- [4] Bloch S., Algebraic cycles and algebraic K-theory, Adv. in Math.61 (3) (1986) 267-304. Zbl0608.14004MR852815
- [5] Bloch S., The moving lemma for higher Chow groups, J. Algebraic Geom.3 (3) (1994) 537-568. Zbl0830.14003MR1269719
- [6] Borel A., Stable real cohomology of arithmetic groups, Ann. Sci. Éc. Nom. Sup.7 (1974) 235-272. Zbl0316.57026MR387496
- [7] Borel A., Cohomologie de et valeurs de fonctions zêta aux points entiers, Ann. Scuola Normale Superiore4 (1977) 613-636. Zbl0382.57027MR506168
- [8] Buchsbaum A., Satellites and exact functors, Ann. of Math.71 (2) (1960) 199-209. Zbl0095.16505MR112905
- [9] Chen K.T., Iterated integrals of differential forms and loop space homology, Ann. of Math.97 (1973) 217-246. Zbl0227.58003MR380859
- [10] Chen K.T., Reduced Bar Constructions on de Rham complexes, in: Algebra, Topology and Category Theory, a collection of papers in honor of Samuel Eilenberg, Academic Press, 1976, pp. 19-32. Zbl0341.57034MR413151
- [11] Deligne P., Le groupe fondamental de la droite projective moins trois points, in: Galois Groups over , MSRI Publ., vol. 16, Springer-Verlag, 1989, pp. 79-313. Zbl0742.14022MR1012168
- [12] Deligne P., Catégories tannakiennes, in: Grothendieck Festschrift, vol. 2, Progress in Math., vol. 87, Birkhäuser, 1990, pp. 111-195. Zbl0727.14010MR1106898
- [13] Deligne P., Morgan J., Notes on supersymmetry, in: Quantum Fields and Strings : A Course for Mathematicians, vol. 1, AMS, 1999. Zbl1170.58302MR1701597
- [14] Demazure M., Gabriel P., Groupes algébriques, Masson, 1970. Zbl0203.23401
- [15] Goncharov A.B., Polylogarithms in arithmetic and geometry, in: Proc. ICM Zurich, Birkhäuser, 1994, pp. 374-387. Zbl0849.11087MR1403938
- [16] Goncharov A.B., The dihedral Lie algebras and Galois symmetries of , Duke Math. J.110 (3) (2001) 397-487. Zbl1113.14020MR1869113
- [17] Hain R., Matsumoto M., Weighted completion of Galois groups and Galois actions on the fundamental group of , Compositio Math.139 (2) (2003) 119-167. Zbl1072.14021MR2025807
- [18] Hain R., Zucker S., Unipotent variations of mixed Hodge structure, Inv. Math.88 (1987) 83-124. Zbl0622.14007MR877008
- [19] Hanamura M., Mixed motives and algebraic cycles I, Math. Res. Lett.2 (6) (1995) 811-821, See also II, Inv. Math.158 (1) (2004) 105-179. Zbl0867.14003MR1362972
- [20] Huber A., Mixed Motives and their Realization in Derived Categories, Lecture Notes in Math., vol. 1604, Springer-Verlag, 1995. Zbl0938.14008MR1439046
- [21] Huber A., Realization of Voevodsky's motives, J. Algebraic Geom.9 (2000) 755-799, Corrigendum, Ibid.13 (1) (2004) 195-207. Zbl1058.14033MR2008720
- [22] Jannsen U., Mixed Motives and Algebraic K-Theory, Lecture Notes in Math., vol. 1400, Springer-Verlag, 1990. Zbl0691.14001MR1043451
- [23] Kubert D., The universal ordinary distribution, Bull. SMF107 (1979) 79-202. Zbl0409.12021MR545171
- [24] Levine M., Tate motives and the vanishing conjectures for algebraic K-theory, in: Algebraic K-Theory and Algebraic Topology, Lake Louise, 1991, NATO Adv. Sci. Inst. Ser. C Math. Phys., vol. 407, Kluwer, 1993, pp. 167-188. Zbl0885.19001MR1367296
- [25] Levine M., Bloch's higher Chow groups revisited, in: K-theory, Strasbourg, 1992, Astérisque, vol. 226, SMF, 1994, pp. 235-320. Zbl0817.19004MR1317122
- [26] Levine M., Mixed Motives, Math. Surveys and Monographs, vol. 57, AMS, 1998. Zbl0902.14003MR1623774
- [27] Racinet G., Doubles mélanges des polylogarithmes multiples aux racines de l'unité, Publ. Math. IHÉS95 (2002) 185-231. Zbl1050.11066MR1953193
- [28] Rapoport M., Comparison of the regulators of Beilinson and of Borel, in: Beilinson's Conjectures on Special Values of L-Functions, Perspectives in Math., vol. 4, Academic Press, 1988, pp. 169-192. Zbl0667.14005MR944994
- [29] Reutenauer C., Free Lie Algebras, LMS Monographs New Ser., vol. 7, Oxford University Press, 1993. Zbl0798.17001MR1231799
- [30] Schneider P., Introduction to the Beilinson conjectures, in: Beilinson's Conjectures on Special Values of L-Functions, Perspectives in Math., vol. 4, Academic Press, 1988, pp. 1-35. Zbl0673.14007MR944989
- [31] Terasoma T., Multiple zeta values and mixed Tate motives, Inv. Math.149 (2) (2002) 339-369. Zbl1042.11043MR1918675
- [32] Voevodsky V., Triangulated categories of motives over a field, in: Cycles, Transfer and Motivic Homology Theories, Ann. of Math. Studies, vol. 143, Princeton University Press, 2000, pp. 188-238. Zbl1019.14009MR1764202
- [33] Washington L.C., Introduction to cyclotomic fields, Graduate Texts in Math., vol. 81, Springer-Verlag, 1997. Zbl0484.12001MR1421575
- [34] Wojtkowiak Z., Cosimplicial objects in algebraic geometry, in: Algebraic K-Theory and Algebraic Topology, Lake Louise, 1991, NATO Adv. Sci. but. Ser. C Math. Phys., vol. 407, Kluwer, 1993, pp. 287-327. Zbl0916.14006MR1367304
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.