Automorphisms of order three on numerical Godeaux surfaces

Eleonora Palmieri

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2008)

  • Volume: 7, Issue: 3, page 483-543
  • ISSN: 0391-173X

Abstract

top
We prove that a numerical Godeaux surface cannot have an automorphism of order three.

How to cite

top

Palmieri, Eleonora. "Automorphisms of order three on numerical Godeaux surfaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 7.3 (2008): 483-543. <http://eudml.org/doc/272274>.

@article{Palmieri2008,
abstract = {We prove that a numerical Godeaux surface cannot have an automorphism of order three.},
author = {Palmieri, Eleonora},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Godeaux surfaces; automorphisms of surfaces of general type},
language = {eng},
number = {3},
pages = {483-543},
publisher = {Scuola Normale Superiore, Pisa},
title = {Automorphisms of order three on numerical Godeaux surfaces},
url = {http://eudml.org/doc/272274},
volume = {7},
year = {2008},
}

TY - JOUR
AU - Palmieri, Eleonora
TI - Automorphisms of order three on numerical Godeaux surfaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2008
PB - Scuola Normale Superiore, Pisa
VL - 7
IS - 3
SP - 483
EP - 543
AB - We prove that a numerical Godeaux surface cannot have an automorphism of order three.
LA - eng
KW - Godeaux surfaces; automorphisms of surfaces of general type
UR - http://eudml.org/doc/272274
ER -

References

top
  1. [1] W. Barth, C. Peters and A. Van de Ven, “Compact Complex Surfaces”, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge, Band 4, Springer-Verlag, Berlin, 1984. Zbl0718.14023MR749574
  2. [2] I. Bauer, F. Catanese and R. Pignatelli, Complex surfaces of general type: some recent progress, In: “Global aspects of complex geometry”, F. Catanese et al. (eds.), Springer Verlag, 2006, 1–58. Zbl1118.14041MR2264106
  3. [3] A. Calabri, “Rivestimenti del Piano. Sulla Razionalità dei Piani Doppi e Tripli Ciclici”, Edizioni Plus - Pisa University Press, 2006. 
  4. [4] A. Calabri, C. Ciliberto and M. Mendes Lopes, Even sets of four nodes on rational surfaces, Math. Res. Lett.11 (2004), 799–808. Zbl1070.14039MR2099361
  5. [5] A. Calabri, C. Ciliberto and M. Mendes Lopes, Numerical Godeaux surfaces with an involution, Trans. Amer. Math. Soc.359 (2007), 1605–1632. Zbl1124.14036MR2272143
  6. [6] F. Catanese and R. Pignatelli, Fibrations of low genus, I, Ann. Sci. Ècole Norm. Sup.39 (2006), 1011–1049. Zbl1125.14023MR2316980
  7. [7] F. Enriques, “Le superficie Algebriche”, Zanichelli, Bologna, 1949. Zbl0036.37102MR31770
  8. [8] A. Franchetta, Sulle curve riducibili appartenenti ad una superficie algebrica, In: “Alfredo Franchetta, Opere Scelte”, C. Ciliberto and E. Sernesi (eds.), Giannini, Napoli, 2006, 139–161. Zbl0039.16304MR35484
  9. [9] L. Godeaux, Sur une surface algébrique de genre zero et de bigenre deux, Atti Accad. Naz. Lincei14 (1931), 479–481. Zbl0004.01703
  10. [10] J. Keum and Y. Lee, Fixed locus of an involution acting on a Godeaux surface, Math. Proc. Cambridge Philos. Soc.129 (2000), 205–216. Zbl1024.14019MR1765910
  11. [11] R. Miranda, Triple covers in algebraic geometry, Amer. J. Math.107 (1985), 1123–1158. Zbl0611.14011MR805807
  12. [12] Y. Miyaoka, Tricanonical maps of Godeaux surfaces, Invent. Math.34 (1976), 99–111. Zbl0337.14010MR409481
  13. [14] E. Palmieri, “Numerical Godeaux Surfaces with an Automorphism of Order Three”, Ph.D. thesis, Università degli studi Roma Tre, 2007. 
  14. [13] R. Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math.417 (1991), 191–213. Zbl0721.14009MR1103912
  15. [15] M. Reid, Surfaces with p g = 0 , K 2 = 1 , J. Fac. Sci. Univ. Tokio, Sect. IA Math., 25 (1978), 75–92. Zbl0399.14025MR494596
  16. [16] E. Stagnaro, On Campedelli branch loci, Ann. Univ. Ferrara, Sez. VII, 43 (1997), 1–26. Zbl0927.14017MR1686746
  17. [17] S. L. Tan, Galois triple covers of surfaces, Sci. China, Ser. A, 34 (1991), 935–942. Zbl0753.14008MR1150664
  18. [18] G. Xiao, Bound of automorphisms of surfaces of general type. I, Ann. of Math. (2) 139 (1994), 51–77. Zbl0811.14011MR1259364
  19. [19] G. Xiao, Bound of automorphisms of surfaces of general type. II, J. Algebraic Geom. 4 (1995), 701–793. Zbl0841.14011MR1339845
  20. [20] G. Xiao, On Abelian automorphism group of a surface of general type, Invent. Math.102 (1990), 619–631. Zbl0739.14024MR1074488

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.