Automorphisms of order three on numerical Godeaux surfaces
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2008)
- Volume: 7, Issue: 3, page 483-543
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topPalmieri, Eleonora. "Automorphisms of order three on numerical Godeaux surfaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 7.3 (2008): 483-543. <http://eudml.org/doc/272274>.
@article{Palmieri2008,
abstract = {We prove that a numerical Godeaux surface cannot have an automorphism of order three.},
author = {Palmieri, Eleonora},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Godeaux surfaces; automorphisms of surfaces of general type},
language = {eng},
number = {3},
pages = {483-543},
publisher = {Scuola Normale Superiore, Pisa},
title = {Automorphisms of order three on numerical Godeaux surfaces},
url = {http://eudml.org/doc/272274},
volume = {7},
year = {2008},
}
TY - JOUR
AU - Palmieri, Eleonora
TI - Automorphisms of order three on numerical Godeaux surfaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2008
PB - Scuola Normale Superiore, Pisa
VL - 7
IS - 3
SP - 483
EP - 543
AB - We prove that a numerical Godeaux surface cannot have an automorphism of order three.
LA - eng
KW - Godeaux surfaces; automorphisms of surfaces of general type
UR - http://eudml.org/doc/272274
ER -
References
top- [1] W. Barth, C. Peters and A. Van de Ven, “Compact Complex Surfaces”, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge, Band 4, Springer-Verlag, Berlin, 1984. Zbl0718.14023MR749574
- [2] I. Bauer, F. Catanese and R. Pignatelli, Complex surfaces of general type: some recent progress, In: “Global aspects of complex geometry”, F. Catanese et al. (eds.), Springer Verlag, 2006, 1–58. Zbl1118.14041MR2264106
- [3] A. Calabri, “Rivestimenti del Piano. Sulla Razionalità dei Piani Doppi e Tripli Ciclici”, Edizioni Plus - Pisa University Press, 2006.
- [4] A. Calabri, C. Ciliberto and M. Mendes Lopes, Even sets of four nodes on rational surfaces, Math. Res. Lett.11 (2004), 799–808. Zbl1070.14039MR2099361
- [5] A. Calabri, C. Ciliberto and M. Mendes Lopes, Numerical Godeaux surfaces with an involution, Trans. Amer. Math. Soc.359 (2007), 1605–1632. Zbl1124.14036MR2272143
- [6] F. Catanese and R. Pignatelli, Fibrations of low genus, I, Ann. Sci. Ècole Norm. Sup.39 (2006), 1011–1049. Zbl1125.14023MR2316980
- [7] F. Enriques, “Le superficie Algebriche”, Zanichelli, Bologna, 1949. Zbl0036.37102MR31770
- [8] A. Franchetta, Sulle curve riducibili appartenenti ad una superficie algebrica, In: “Alfredo Franchetta, Opere Scelte”, C. Ciliberto and E. Sernesi (eds.), Giannini, Napoli, 2006, 139–161. Zbl0039.16304MR35484
- [9] L. Godeaux, Sur une surface algébrique de genre zero et de bigenre deux, Atti Accad. Naz. Lincei14 (1931), 479–481. Zbl0004.01703
- [10] J. Keum and Y. Lee, Fixed locus of an involution acting on a Godeaux surface, Math. Proc. Cambridge Philos. Soc.129 (2000), 205–216. Zbl1024.14019MR1765910
- [11] R. Miranda, Triple covers in algebraic geometry, Amer. J. Math.107 (1985), 1123–1158. Zbl0611.14011MR805807
- [12] Y. Miyaoka, Tricanonical maps of Godeaux surfaces, Invent. Math.34 (1976), 99–111. Zbl0337.14010MR409481
- [14] E. Palmieri, “Numerical Godeaux Surfaces with an Automorphism of Order Three”, Ph.D. thesis, Università degli studi Roma Tre, 2007.
- [13] R. Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math.417 (1991), 191–213. Zbl0721.14009MR1103912
- [15] M. Reid, Surfaces with , J. Fac. Sci. Univ. Tokio, Sect. IA Math., 25 (1978), 75–92. Zbl0399.14025MR494596
- [16] E. Stagnaro, On Campedelli branch loci, Ann. Univ. Ferrara, Sez. VII, 43 (1997), 1–26. Zbl0927.14017MR1686746
- [17] S. L. Tan, Galois triple covers of surfaces, Sci. China, Ser. A, 34 (1991), 935–942. Zbl0753.14008MR1150664
- [18] G. Xiao, Bound of automorphisms of surfaces of general type. I, Ann. of Math. (2) 139 (1994), 51–77. Zbl0811.14011MR1259364
- [19] G. Xiao, Bound of automorphisms of surfaces of general type. II, J. Algebraic Geom. 4 (1995), 701–793. Zbl0841.14011MR1339845
- [20] G. Xiao, On Abelian automorphism group of a surface of general type, Invent. Math.102 (1990), 619–631. Zbl0739.14024MR1074488
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.