Fibrations of low genus, I

Fabrizio Catanese; Roberto Pignatelli

Annales scientifiques de l'École Normale Supérieure (2006)

  • Volume: 39, Issue: 6, page 1011-1049
  • ISSN: 0012-9593

How to cite

top

Catanese, Fabrizio, and Pignatelli, Roberto. "Fibrations of low genus, I." Annales scientifiques de l'École Normale Supérieure 39.6 (2006): 1011-1049. <http://eudml.org/doc/82702>.

@article{Catanese2006,
author = {Catanese, Fabrizio, Pignatelli, Roberto},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {fibrations; surfaces of general type; surfaces with },
language = {eng},
number = {6},
pages = {1011-1049},
publisher = {Elsevier},
title = {Fibrations of low genus, I},
url = {http://eudml.org/doc/82702},
volume = {39},
year = {2006},
}

TY - JOUR
AU - Catanese, Fabrizio
AU - Pignatelli, Roberto
TI - Fibrations of low genus, I
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 6
SP - 1011
EP - 1049
LA - eng
KW - fibrations; surfaces of general type; surfaces with
UR - http://eudml.org/doc/82702
ER -

References

top
  1. [1] Artin M., On isolated rational singularities of surfaces, Amer. J. Math.88 (1966) 129-136. Zbl0142.18602MR199191
  2. [2] Atiyah M.F., Vector bundles over an elliptic curve, Proc. Lond. Math. Soc. (3)7 (1957) 414-452. Zbl0084.17305MR131423
  3. [3] Barth W., Peters C., Van de Ven A., Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 4, Springer, Berlin, 1984, x+304 pp. Zbl0718.14023MR749574
  4. [4] Beauville A., L’inégalité p g 2 q - 4 pour les surfaces de type général, Bull. Soc. Math. France110 (3) (1982) 344-346. Zbl0543.14026MR688038
  5. [5] Bombieri E., Canonical models of surfaces of general type, Inst. Hautes Études Sci. Publ. Math.42 (1973) 171-219. Zbl0259.14005MR318163
  6. [6] Bombieri, E., Unpublished manuscript, 1972, pp. 1–51. 
  7. [7] Catanese F., On a class of surfaces of general type, in: Proc. CIME Conference ‘Algebraic Surfaces’, 1977, Liguori Editore, Napoli, 1981, pp. 269-284. 
  8. [8] Catanese F., Pluricanonical Gorenstein curves, in: Enumerative Geometry and Classical Algebraic Geometry, Nice, 1981, Progr. Math., vol. 24, Birkhäuser Boston, 1982, pp. 51-95. Zbl0518.14017MR685764
  9. [9] Catanese F., Singular bidouble covers and the construction of interesting algebraic surfaces, in: Proceedings of the Warsaw Conference in honour of F. Hirzebruch's 70th Birthday, AMS Contemp. Math., vol. 241, 1999, pp. 97-120. Zbl0964.14012MR1718139
  10. [10] Catanese F., Fibred surfaces, varieties isogenous to a product and related moduli spaces, Amer. J. Math.122 (1) (2000) 1-44. Zbl0983.14013MR1737256
  11. [11] Catanese F., Ciliberto C., Surfaces with p g = q = 1 , in: Problems in the Theory of Surfaces and Their Classification, Cortona, 1988, Sympos. Math., SSSII, Academic Press, London, 1991, pp. 49-79. Zbl0828.14024MR1273372
  12. [12] Catanese F., Ciliberto C., Symmetric products of elliptic curves and surfaces of general type with p g = q = 1 , J. Algebraic Geom.2 (3) (1993) 389-411. Zbl0791.14015MR1211993
  13. [13] Catanese F., Ciliberto C., Mendes Lopes M., On the classification of irregular surfaces of general type with nonbirational bicanonical map, Trans. Amer. Math. Soc.350 (1) (1998) 275-308. Zbl0889.14019MR1422597
  14. [14] Catanese F., Franciosi M., Divisors of small genus on algebraic surfaces and projective embeddings, in: Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry, Ramat Gan, 1993, Israel Math. Conf. Proc., vol. 9, Bar-Ilan Univ., Ramat Gan, 1996, pp. 109-140. Zbl0855.14004MR1360499
  15. [15] Catanese F., Franciosi M., Hulek K., Reid M., Embedding of curves and surfaces, Nagoya Math. J.154 (1999) 185-220. Zbl0933.14003MR1689180
  16. [16] Catanese F., Pignatelli R., On simply connected Godeaux surfaces, in: Complex Analysis and Algebraic Geometry, de Gruyter, Berlin, 2000, pp. 117-153. Zbl1054.14051MR1760875
  17. [17] Catanese F., Schreyer F.-O., Canonical projection of irregular algebraic surfaces, in: Algebraic Geometry, de Gruyter, Berlin, 2002, pp. 79-116. Zbl1053.14048MR1954059
  18. [18] Ciliberto C., The bicanonical map for surfaces of general type, in: Algebraic Geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., Part 1, vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 57-84. Zbl0929.14022
  19. [19] Clemens H., Geometry of formal Kuranishi theory, Adv. Math.198 (1) (2005) 311-365. Zbl1092.14004MR2183257
  20. [20] Enriques F., Le superficie algebriche, Zanichelli, Bologna, 1949. Zbl0036.37102MR31770
  21. [21] Esnault H., Viehweg E., Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields, Compositio Math.76 (1–2) (1990) 69-85. Zbl0742.14020MR1078858
  22. [22] Franchetta A., Sul sistema aggiunto ad una curva riducibile, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8)6 (1949) 685-687. Zbl0035.22401MR35485
  23. [23] Franchetta A., Sui sistemi pluricanonici di una superficie algebrica, Univ. Roma. Ist. Naz. Alta Mat. Rend. Mat. e Appl. (5)8 (1949) 423-440. Zbl0039.37603MR34060
  24. [24] Franciosi M., Adjoint divisors on algebraic curves, Adv. Math.186 (2) (2004) 317-333. Zbl1067.14008MR2073909
  25. [25] Fujita T., On Kähler fiber spaces over curves, J. Math. Soc. Japan30 (4) (1978) 779-794. Zbl0393.14006MR513085
  26. [26] Fujita T., The sheaf of relative canonical forms of a Kähler fiber space over a curve, Proc. Japan Acad. Ser. A Math. Sci.54 (7) (1978) 183-184. Zbl0412.32029MR510945
  27. [27] Hartshorne R., Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer, New York, 1977, xvi+496 pp. Zbl0367.14001MR463157
  28. [28] Horikawa E., On algebraic surfaces with pencils of curves of genus 2, in: Complex Analysis and Algebraic Geometry, Iwanami Shoten, Tokyo, 1977, pp. 79-90. Zbl0349.14021MR453756
  29. [29] Horikawa E., Algebraic surfaces of general type with small c 2 1 . V, J. Fac. Sci. Univ. Tokyo Sect. IA Math.28 (3) (1981) 745-755. Zbl0505.14028MR656051
  30. [30] Kodaira K., On compact analytic surfaces. II, Ann. of Math. (2)77 (1963) 563-626, On compact analytic surfaces. III, Ann. of Math. (2)78 (1963) 1-40. Zbl0118.15802MR184257
  31. [31] Konno K., Clifford index and the slope of fibered surfaces, J. Algebraic Geom.8 (2) (1999) 207-220. Zbl0979.14004MR1675150
  32. [32] Konno K., 1–2–3 theorem for curves on algebraic surfaces, J. reine angew. Math.533 (2001) 171-205. Zbl0965.14004MR1823868
  33. [33] Mendes Lopes, M., The relative canonical algebra for genus three fibrations, PhD thesis, University of Warwick, 1989. 
  34. [34] Mumford D., Tata Lectures on Theta I, Progr. in Math., vol. 28, Birkhäuser Boston, 1983, xiii+235 pp. Zbl0509.14049MR688651
  35. [35] Ogg A.P., On pencils of curves of genus two, Topology5 (1966) 355-362. Zbl0145.17802MR201437
  36. [36] Ramanujam C.P., Remarks on the Kodaira vanishing theorem, J. Indian Math. Soc. (N.S.)36 (1972) 41-51, Supplement, J. Indian Math. Soc. (N.S.)38 (1, 2, 3, 4) (1974) 121-124, (1975). Zbl0276.32018MR330164
  37. [37] Reid M., Surfaces with p g = 0 , K 2 = 1 , J. Fac. Sci. Univ. Tokyo Sect. IA Math.25 (1) (1978) 75-92. Zbl0399.14025MR494596
  38. [38] ReidM., Problems on pencils of small genus, Manuscript, 1990. 
  39. [39] Shafarevich I.R., Lectures on minimal models and birational transformations of two dimensional schemes, in: Notes by C.P. Ramanujam, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 37, Tata Institute of Fundamental Research, Bombay, 1966, iv+175 pp. Zbl0164.51704MR217068
  40. [40] Xiao G., Surfaces fibrées en courbes de genre deux, in: Lecture Notes in Mathematics, vol. 1137, Springer, Berlin, 1985, x+103 pp. Zbl0579.14028MR872271
  41. [41] Xiao G., Fibered algebraic surfaces with low slope, Math. Ann.276 (3) (1987) 449-466. Zbl0596.14028MR875340
  42. [42] Zucconi F., A note on a theorem of Horikawa, Rev. Mat. Univ. Comput. Madrid10 (2) (1997) 277-295. Zbl0896.14018MR1605654

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.