Sharp upper bounds for a singular perturbation problem related to micromagnetics
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)
- Volume: 6, Issue: 4, page 673-701
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topPoliakovsky, Arkady. "Sharp upper bounds for a singular perturbation problem related to micromagnetics." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.4 (2007): 673-701. <http://eudml.org/doc/272277>.
@article{Poliakovsky2007,
abstract = {We construct an upper bound for the following family of functionals $\lbrace E_\varepsilon \rbrace _\{\varepsilon >0\}$, which arises in the study of micromagnetics:\[ E\_\varepsilon (u)=\int \_\Omega \varepsilon |\nabla u|^2+\frac\{1\}\{\varepsilon \}\int \_\{\mathbb \{R\}^2\}|H\_u|^2. \]Here $\Omega $ is a bounded domain in $\mathbb \{R\}^2$, $u\in H^1(\Omega ,S^1)$ (corresponding to the magnetization) and $H_u$, the demagnetizing field created by $u$, is given by\[ \{\left\lbrace \begin\{array\}\{ll\} \{\rm div\}\,(\tilde\{u\}+H\_u)=0\quad &\text\{in \}\mathbb \{R\}^2\,,\\ \{\rm curl\}\, H\_u=0\quad \quad \quad &\text\{ in \}\mathbb \{R\}^2\,, \end\{array\}\right.\} \]where $\tilde\{u\}$ is the extension of $u$ by $0$ in $\mathbb \{R\}^2\setminus \Omega $. Our upper bound coincides with the lower bound obtained by Rivière and Serfaty.},
author = {Poliakovsky, Arkady},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {micromagnetics; upper bounds},
language = {eng},
number = {4},
pages = {673-701},
publisher = {Scuola Normale Superiore, Pisa},
title = {Sharp upper bounds for a singular perturbation problem related to micromagnetics},
url = {http://eudml.org/doc/272277},
volume = {6},
year = {2007},
}
TY - JOUR
AU - Poliakovsky, Arkady
TI - Sharp upper bounds for a singular perturbation problem related to micromagnetics
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 4
SP - 673
EP - 701
AB - We construct an upper bound for the following family of functionals $\lbrace E_\varepsilon \rbrace _{\varepsilon >0}$, which arises in the study of micromagnetics:\[ E_\varepsilon (u)=\int _\Omega \varepsilon |\nabla u|^2+\frac{1}{\varepsilon }\int _{\mathbb {R}^2}|H_u|^2. \]Here $\Omega $ is a bounded domain in $\mathbb {R}^2$, $u\in H^1(\Omega ,S^1)$ (corresponding to the magnetization) and $H_u$, the demagnetizing field created by $u$, is given by\[ {\left\lbrace \begin{array}{ll} {\rm div}\,(\tilde{u}+H_u)=0\quad &\text{in }\mathbb {R}^2\,,\\ {\rm curl}\, H_u=0\quad \quad \quad &\text{ in }\mathbb {R}^2\,, \end{array}\right.} \]where $\tilde{u}$ is the extension of $u$ by $0$ in $\mathbb {R}^2\setminus \Omega $. Our upper bound coincides with the lower bound obtained by Rivière and Serfaty.
LA - eng
KW - micromagnetics; upper bounds
UR - http://eudml.org/doc/272277
ER -
References
top- [1] L. Ambrosio, C. De Lellis and C. Mantegazza, Line energies for gradient vector fields in the plane, Calc. Var. Partial Differential Equations9 (1999), 327–355. Zbl0960.49013MR1731470
- [2] L. Ambrosio, N. Fusco and D. Pallara, “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs, Oxford University Press, New York, 2000. Zbl0957.49001MR1857292
- [3] P. Aviles and Y. Giga, A mathematical problem related to the physical theory of liquid crystal configurations, Proc. Centre Math. Anal. Austral. Nat. Univ.12 (1987), 1–16. MR924423
- [4] P. Aviles and Y. Giga, On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields, Proc. Roy. Soc. Edinburgh Sect. A129 (1999), 1–17. Zbl0923.49008MR1669225
- [5] S. Conti and C. De Lellis, Sharp upper bounds for a variational problem with singular perturbation, Math. Ann.338 (2007), 119–146. Zbl1186.49004MR2295507
- [6] J. Dávila and R. Ignat, Lifting of functions with values in , C. R. Math. Acad. Sci. Paris337 (2003) 159–164. Zbl1046.46026MR2001127
- [7] C. De Lellis, An example in the gradient theory of phase transitions ESAIM Control Optim. Calc. Var. 7 (2002), 285–289 (electronic). Zbl1037.49010MR1925030
- [8] A. DeSimone, S. Müller, R. V. Kohn and F. Otto, A compactness result in the gradient theory of phase transitions, Proc. Roy. Soc. Edinburgh Sect. A131 (2001), 833–844. Zbl0986.49009MR1854999
- [9] N. M. Ercolani, R. Indik, A. C. Newell and T. Passot, The geometry of the phase diffusion equation, J. Nonlinear Sci.10 (2000), 223–274. Zbl0981.76087MR1743400
- [10] L. C. Evans, “Partial Differential Equations”, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, 1998. Zbl0902.35002MR2597943
- [11] L. C. Evans and R. F. Gariepy, “Measure Theory and Fine Properties of Functions”, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. Zbl0804.28001MR1158660
- [12] D. Gilbarg and N. Trudinger, “Elliptic Partial Differential Equations of Elliptic Type”, 2nd ed., Springer-Verlag, Berlin-Heidelberg, 1983. Zbl0198.14101MR737190
- [13] E. Giusti, “Minimal Surfaces and Functions of Bounded Variation”, Monographs in Mathematics, Vol. 80, Birkhäuser Verlag, Basel, 1984. Zbl0545.49018MR775682
- [14] W. Jin and R.V. Kohn, Singular perturbation and the energy of folds, J. Nonlinear Sci.10 (2000), 355–390. Zbl0973.49009MR1752602
- [15] A. Poliakovsky, A method for establishing upper bounds for singular perturbation problems, C. R. Math. Acad. Sci. Paris341 (2005), 97–102. Zbl1068.49009MR2153964
- [16] A. Poliakovsky, Upper bounds for singular perturbation problems involving gradient fields, J. Eur. Math. Soc.9 (2007), 1–43. Zbl1241.49011MR2283101
- [17] A. Poliakovsky, A general technique to prove upper bounds for singular perturbation problems, submitted to Journal d’Analyse. Zbl1153.49018
- [18] T. Rivière and S. Serfaty, Limiting domain wall energy for a problem related to micromagnetics, Comm. Pure Appl. Math.54 (2001), 294–338. Zbl1031.35142MR1809740
- [19] T. Rivière and S. Serfaty, Compactness, kinetic formulation and entropies for a problem related to mocromagnetics, Comm. Partial Differential Equations28 (2003), 249–269. Zbl1094.35125MR1974456
- [20] A. I. Volpert and S. I. Hudjaev, “Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics”, Martinus Nijhoff Publishers, Dordrecht, 1985. Zbl0564.46025MR785938
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.