The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Sharp upper bounds for a singular perturbation problem related to micromagnetics”

Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation

Jacques Giacomoni, Ian Schindler, Peter Takáč (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We investigate the following quasilinear and singular problem, t o 2 . 7 c m - Δ p u = λ u δ + u q in Ω ; u | Ω = 0 , u > 0 in Ω , t o 2 . 7 c m (P) where Ω is an open bounded domain with smooth boundary, 1 < p < , p - 1 < q p * - 1 , λ > 0 , and 0 < δ < 1 . As usual, p * = N p N - p if 1 < p < N , p * ( p , ) is arbitrarily large if p = N , and p * = if p > N . We employ variational methods in order to show the existence of at least two distinct (positive) solutions of problem (P) in W 0 1 , p ( Ω ) . While following an approach due to Ambrosetti-Brezis-Cerami, we need to prove two new results of separate interest: a strong comparison principle...

Correct solvability of a general differential equation of the first order in the space L p ( )

Nina A. Chernyavskaya, Leonid A. Shuster (2015)

Archivum Mathematicum

Similarity:

We consider the equation - r ( x ) y ' ( x ) + q ( x ) y ( x ) = f ( x ) , x where f L p ( ) , p [ 1 , ] ( L ( ) : = C ( ) ) and 0 < r C ( ) , 0 q L 1 ( ) . We obtain minimal requirements to the functions r and q , in addition to (), under which equation () is correctly solvable in L p ( ) , p [ 1 , ] .

Nonlinear fourth order problems with asymptotically linear nonlinearities

Abir Amor Ben Ali, Makkia Dammak (2024)

Mathematica Bohemica

Similarity:

We investigate some nonlinear elliptic problems of the form Δ 2 v + σ ( x ) v = h ( x , v ) in Ω , v = Δ v = 0 on Ω , ( P ) where Ω is a regular bounded domain in N , N 2 , σ ( x ) a positive function in L ( Ω ) , and the nonlinearity h ( x , t ) is indefinite. We prove the existence of solutions to the problem (P) when the function h ( x , t ) is asymptotically linear at infinity by using variational method but without the Ambrosetti-Rabinowitz condition. Also, we consider the case when the nonlinearities are superlinear and subcritical.

On behavior of solutions to a chemotaxis system with a nonlinear sensitivity function

Senba, Takasi, Fujie, Kentarou

Similarity:

In this paper, we consider solutions to the following chemotaxis system with general sensitivity τ u t = Δ u - · ( u χ ( v ) ) in Ω × ( 0 , ) , η v t = Δ v - v + u in Ω × ( 0 , ) , u ν = u ν = 0 on Ω × ( 0 , ) . Here, τ and η are positive constants, χ is a smooth function on ( 0 , ) satisfying χ ' ( · ) > 0 and Ω is a bounded domain of 𝐑 n ( n 2 ). It is well known that the chemotaxis system with direct sensitivity ( χ ( v ) = χ 0 v , χ 0 > 0 ) has blowup solutions in the case where n 2 . On the other hand, in the case where χ ( v ) = χ 0 log v with 0 < χ 0 1 , any solution to the system exists globally in time and is bounded. We present a sufficient condition for the boundedness...

Existence and multiplicity of solutions for a p ( x ) -Kirchhoff type problem via variational techniques

A. Mokhtari, Toufik Moussaoui, D. O’Regan (2015)

Archivum Mathematicum

Similarity:

This paper discusses the existence and multiplicity of solutions for a class of p ( x ) -Kirchhoff type problems with Dirichlet boundary data of the following form - a + b Ω 1 p ( x ) | u | p ( x ) d x div ( | u | p ( x ) - 2 u ) = f ( x , u ) , i n Ω u = 0 o n Ω , where Ω is a smooth open subset of N and p C ( Ω ¯ ) with N < p - = inf x Ω p ( x ) p + = sup x Ω p ( x ) < + , a , b are positive constants and f : Ω ¯ × is a continuous function. The proof is based on critical point theory and variable exponent Sobolev space theory.

On k -Pell numbers which are sum of two Narayana’s cows numbers

Kouèssi Norbert Adédji, Mohamadou Bachabi, Alain Togbé (2025)

Mathematica Bohemica

Similarity:

For any positive integer k 2 , let ( P n ( k ) ) n 2 - k be the k -generalized Pell sequence which starts with 0 , , 0 , 1 ( k terms) with the linear recurrence P n ( k ) = 2 P n - 1 ( k ) + P n - 2 ( k ) + + P n - k ( k ) for n 2 . Let ( N n ) n 0 be Narayana’s sequence given by N 0 = N 1 = N 2 = 1 and N n + 3 = N n + 2 + N n . The purpose of this paper is to determine all k -Pell numbers which are sums of two Narayana’s numbers. More precisely, we study the Diophantine equation P p ( k ) = N n + N m in nonnegative integers k , p , n and m .

The equation - Δ 𝑢 - λ 𝑢 | 𝑥 | 2 = | 𝑢 | 𝑝 + 𝑐 𝑓 ( 𝑥 ) : The optimal power

Boumediene Abdellaoui, Ireneo Peral (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We will consider the following problem - Δ u - λ u | x | 2 = | u | p + c f , u &gt; 0 in Ω , where Ω N is a domain such that 0 Ω , N 3 , c &gt; 0 and λ &gt; 0 . The main objective of this note is to study the precise threshold p + = p + ( λ ) for which there is novery weak supersolutionif p p + ( λ ) . The optimality of p + ( λ ) is also proved by showing the solvability of the Dirichlet problem when 1 p &lt; p + ( λ ) , for c &gt; 0 small enough and f 0 under some hypotheses that we will prescribe.

Existence theorems for nonlinear differential equations having trichotomy in Banach spaces

Adel Mahmoud Gomaa (2017)

Czechoslovak Mathematical Journal

Similarity:

We give existence theorems for weak and strong solutions with trichotomy of the nonlinear differential equation x ˙ ( t ) = ( t ) x ( t ) + f ( t , x ( t ) ) , t ( P ) where { ( t ) : t } is a family of linear operators from a Banach space E into itself and f : × E E . By L ( E ) we denote the space of linear operators from E into itself. Furthermore, for a < b and d > 0 , we let C ( [ - d , 0 ] , E ) be the Banach space of continuous functions from [ - d , 0 ] into E and f d : [ a , b ] × C ( [ - d , 0 ] , E ) E . Let ^ : [ a , b ] L ( E ) be a strongly measurable and Bochner integrable operator on [ a , b ] and for t [ a , b ] define τ t x ( s ) = x ( t + s ) for each s [ - d , 0 ] . We prove that, under certain...

Padovan and Perrin numbers as products of two generalized Lucas numbers

Kouèssi Norbert Adédji, Japhet Odjoumani, Alain Togbé (2023)

Archivum Mathematicum

Similarity:

Let P m and E m be the m -th Padovan and Perrin numbers respectively. Let r , s be non-zero integers with r 1 and s { - 1 , 1 } , let { U n } n 0 be the generalized Lucas sequence given by U n + 2 = r U n + 1 + s U n , with U 0 = 0 and U 1 = 1 . In this paper, we give effective bounds for the solutions of the following Diophantine equations P m = U n U k and E m = U n U k , where m , n and k are non-negative integers. Then, we explicitly solve the above Diophantine equations for the Fibonacci, Pell and balancing sequences.